These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A study of the dynamic interaction of surfactants with graphite and carbon nanotubes using Fmoc-amino acids as a model system. Li Y; Cousins BG; Ulijn RV; Kinloch IA Langmuir; 2009 Oct; 25(19):11760-7. PubMed ID: 19731945 [TBL] [Abstract][Full Text] [Related]
4. Self-assembly properties of some chiral N-palmitoyl amino acid surfactants in aqueous solution. Gerova M; Rodrigues F; Lamère JF; Dobrev A; Fery-Forgues S J Colloid Interface Sci; 2008 Mar; 319(2):526-33. PubMed ID: 18155019 [TBL] [Abstract][Full Text] [Related]
5. Effect of the headgroup structure on the aggregation behavior and stability of self-assemblies of sodium N-[4-(n-dodecyloxy)benzoyl]-l-aminoacidates in water. Mohanty A; Dey J Langmuir; 2007 Jan; 23(3):1033-40. PubMed ID: 17241010 [TBL] [Abstract][Full Text] [Related]
6. Controlled release from modified amino acid hydrogels governed by molecular size or network dynamics. Sutton S; Campbell NL; Cooper AI; Kirkland M; Frith WJ; Adams DJ Langmuir; 2009 Sep; 25(17):10285-91. PubMed ID: 19499945 [TBL] [Abstract][Full Text] [Related]
7. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution. Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258 [TBL] [Abstract][Full Text] [Related]
8. Interplay of electrostatic and hydrophobic effects with binding of cationic gemini surfactants and a conjugated polyanion: experimental and molecular modeling studies. Burrows HD; Tapia MJ; Silva CL; Pais AA; Fonseca SM; Pina J; de Melo JS; Wang Y; Marques EF; Knaapila M; Monkman AP; Garamus VM; Pradhan S; Scherf U J Phys Chem B; 2007 May; 111(17):4401-10. PubMed ID: 17425360 [TBL] [Abstract][Full Text] [Related]
9. Hydrogelation Induced by Change in Hydrophobicity of Amino Acid Side Chain in Fmoc-Functionalised Amino Acid: Significance of Sulfur on Hydrogelation. Reddy SM; Dorishetty P; Deshpande AP; Shanmugam G Chemphyschem; 2016 Jul; 17(14):2170-80. PubMed ID: 27017582 [TBL] [Abstract][Full Text] [Related]
10. Synthesis, experimental and in silico studies of N-fluorenylmethoxycarbonyl-O-tert-butyl-N-methyltyrosine, coupled with CSD data: a survey of interactions in the crystal structures of Fmoc-amino acids. Bojarska J; Remko M; Madura ID; Kaczmarek K; Zabrocki J; Wolf WM Acta Crystallogr C Struct Chem; 2020 Apr; 76(Pt 4):328-345. PubMed ID: 32229714 [TBL] [Abstract][Full Text] [Related]
11. NMR and computer-aided modeling studies of the interactions between a cyclic hexapeptide and the two enantiomers of some Boc- and Fmoc-amino acids. McEwen I Biopolymers; 1993 Jun; 33(6):933-42. PubMed ID: 8318666 [TBL] [Abstract][Full Text] [Related]
12. Hydrogelation and self-assembly of Fmoc-tripeptides: unexpected influence of sequence on self-assembled fibril structure, and hydrogel modulus and anisotropy. Cheng G; Castelletto V; Moulton CM; Newby GE; Hamley IW Langmuir; 2010 Apr; 26(7):4990-8. PubMed ID: 20073495 [TBL] [Abstract][Full Text] [Related]
13. Enhanced interfacial properties of novel amino acid-derived surfactants: Effects of headgroup chemistry and of alkyl chain length and unsaturation. Brito RO; Silva SG; Fernandes RM; Marques EF; Enrique-Borges J; do Vale ML Colloids Surf B Biointerfaces; 2011 Aug; 86(1):65-70. PubMed ID: 21493048 [TBL] [Abstract][Full Text] [Related]
14. An additional fluorenylmethoxycarbonyl (Fmoc) moiety in di-Fmoc-functionalized L-lysine induces pH-controlled ambidextrous gelation with significant advantages. Reddy SM; Shanmugam G; Duraipandy N; Kiran MS; Mandal AB Soft Matter; 2015 Nov; 11(41):8126-40. PubMed ID: 26338226 [TBL] [Abstract][Full Text] [Related]
15. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives. Ryan DM; Doran TM; Anderson SB; Nilsson BL Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045 [TBL] [Abstract][Full Text] [Related]
16. Size control of styrene oxide-ethylene oxide diblock copolymer aggregates with classical surfactants: DLS, TEM, and ITC study. Castro E; Taboada P; Barbosa S; Mosquera V Biomacromolecules; 2005; 6(3):1438-47. PubMed ID: 15877363 [TBL] [Abstract][Full Text] [Related]
17. Modulating the emission intensity of poly-(9,9-bis(6'-N,N,N-trimethylammonium)hexyl)-fluorene phenylene) bromide through interaction with sodium alkylsulfonate surfactants. Monteserín M; Burrows HD; Valente AJ; Lobo VM; Mallavia R; Tapia MJ; García-Zubiri IX; Di Paolo RE; Maçanita AL J Phys Chem B; 2007 Dec; 111(48):13560-9. PubMed ID: 17994719 [TBL] [Abstract][Full Text] [Related]
18. Fmoc-2-mercaptobenzothiazole, for the introduction of the Fmoc moiety free of side-reactions. Isidro-Llobet A; Just-Baringo X; Ewenson A; Alvarez M; Albericio F Biopolymers; 2007; 88(5):733-7. PubMed ID: 17385207 [TBL] [Abstract][Full Text] [Related]
19. Geometrical and conformational preferences of the 9-fluorenylmethoxycarbonyl-amino moiety. Broda MA; Mazur L; Kozioł AE; Rzeszotarska B J Pept Sci; 2004 Jul; 10(7):448-61. PubMed ID: 15298180 [TBL] [Abstract][Full Text] [Related]
20. Specific optical rotation is a versatile tool for the identification of critical micelle concentration and micellar growth of tartaric acid-based diastereomeric amphiphiles. Raghavan V; Polavarapu PL Chirality; 2017 Dec; 29(12):836-846. PubMed ID: 28991388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]