BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

522 related articles for article (PubMed ID: 23057739)

  • 1. Unified model for contact angle hysteresis on heterogeneous and superhydrophobic surfaces.
    Raj R; Enright R; Zhu Y; Adera S; Wang EN
    Langmuir; 2012 Nov; 28(45):15777-88. PubMed ID: 23057739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
    Zhao H; Park KC; Law KY
    Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces.
    Choi W; Tuteja A; Mabry JM; Cohen RE; McKinley GH
    J Colloid Interface Sci; 2009 Nov; 339(1):208-16. PubMed ID: 19683717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces.
    Kusumaatmaja H; Yeomans JM
    Langmuir; 2007 May; 23(11):6019-32. PubMed ID: 17451253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contact line and contact angle dynamics in superhydrophobic channels.
    Zhang J; Kwok DY
    Langmuir; 2006 May; 22(11):4998-5004. PubMed ID: 16700586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive modeling of contact angle hysteresis.
    Vedantam S; Panchagnula MV
    J Colloid Interface Sci; 2008 May; 321(2):393-400. PubMed ID: 18329656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computation of contact lines on randomly heterogeneous surfaces.
    David R; Neumann AW
    Langmuir; 2010 Aug; 26(16):13256-62. PubMed ID: 20695567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet compression and relaxation by a superhydrophobic surface: contact angle hysteresis.
    Hong SJ; Chou TH; Chan SH; Sheng YJ; Tsao HK
    Langmuir; 2012 Apr; 28(13):5606-13. PubMed ID: 22390774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wettability of silicone-hydrogel contact lenses in the presence of tear-film components.
    Cheng L; Muller SJ; Radke CJ
    Curr Eye Res; 2004 Feb; 28(2):93-108. PubMed ID: 14972715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.
    Promraksa A; Chen LJ
    J Colloid Interface Sci; 2012 Oct; 384(1):172-81. PubMed ID: 22818957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.
    Xu W; Leeladhar R; Kang YT; Choi CH
    Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel and global approach of the complex and interconnected phenomena related to the contact line movement past a solid surface from hydrophobized silica gel.
    Suciu CV; Iwatsubo T; Yaguchi K; Ikenaga M
    J Colloid Interface Sci; 2005 Mar; 283(1):196-214. PubMed ID: 15694440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting on axially-patterned heterogeneous surfaces.
    RodrĂ­guez-Valverde MA; Ruiz-Cabello FJ; Cabrerizo-Vilchez MA
    Adv Colloid Interface Sci; 2008 May; 138(2):84-100. PubMed ID: 18279819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliable measurement of the receding contact angle.
    Korhonen JT; Huhtamäki T; Ikkala O; Ras RH
    Langmuir; 2013 Mar; 29(12):3858-63. PubMed ID: 23451825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of contact angle hysteresis on droplet coalescence and mixing.
    Nilsson MA; Rothstein JP
    J Colloid Interface Sci; 2011 Nov; 363(2):646-54. PubMed ID: 21855081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.