BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23057820)

  • 1. A clique-based method using dynamic programming for computing edit distance between unordered trees.
    Mori T; Tamura T; Fukagawa D; Takasu A; Tomita E; Akutsu T
    J Comput Biol; 2012 Oct; 19(10):1089-104. PubMed ID: 23057820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A clique-based method for the edit distance between unordered trees and its application to analysis of glycan structures.
    Fukagawa D; Tamura T; Takasu A; Tomita E; Akutsu T
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S13. PubMed ID: 21342542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integer programming-based method for grammar-based tree compression and its application to pattern extraction of glycan tree structures.
    Zhao Y; Hayashida M; Akutsu T
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S4. PubMed ID: 21172054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing an A* algorithm for calculating edit distance between rooted-unordered trees.
    Horesh Y; Mehr R; Unger R
    J Comput Biol; 2006; 13(6):1165-76. PubMed ID: 16901235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grammar-based compression approach to extraction of common rules among multiple trees of glycans and RNAs.
    Zhao Y; Hayashida M; Cao Y; Hwang J; Akutsu T
    BMC Bioinformatics; 2015 Apr; 16():128. PubMed ID: 25907438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Pseudoknotted RNA Secondary Structures by Topological Centroid Identification and Tree Edit Distance.
    Wang F; Akutsu T; Mori T
    J Comput Biol; 2020 Sep; 27(9):1443-1451. PubMed ID: 32058802
    [No Abstract]   [Full Text] [Related]  

  • 7. Efficient tree-matching methods for accurate carbohydrate database queries.
    Aoki KF; Yamaguchi A; Okuno Y; Akutsu T; Ueda N; Kanehisa M; Mamitsuka H
    Genome Inform; 2003; 14():134-43. PubMed ID: 15706528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MASTtreedist: visualization of tree space based on maximum agreement subtree.
    Huang H; Li Y
    J Comput Biol; 2013 Jan; 20(1):42-9. PubMed ID: 23294272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metrics for RNA Secondary Structure Comparison.
    Wang F; Akutsu T; Mori T
    Methods Mol Biol; 2023; 2586():79-88. PubMed ID: 36705899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for rapid similarity analysis of RNA secondary structures.
    Liu N; Wang T
    BMC Bioinformatics; 2006 Nov; 7():493. PubMed ID: 17090331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns.
    Meyer F; Kurtz S; Beckstette M
    BMC Bioinformatics; 2013 Jul; 14():226. PubMed ID: 23865810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Linear Time Solution to the Labeled Robinson-Foulds Distance Problem.
    Briand S; Dessimoz C; El-Mabrouk N; Nevers Y
    Syst Biol; 2022 Oct; 71(6):1391-1403. PubMed ID: 35426933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new distance for high level RNA secondary structure comparison.
    Allali J; Sagot MF
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(1):3-14. PubMed ID: 17044160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general edit distance between RNA structures.
    Jiang T; Lin G; Ma B; Zhang K
    J Comput Biol; 2002; 9(2):371-88. PubMed ID: 12015887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing multiple RNA secondary structures using tree comparisons.
    Shapiro BA; Zhang KZ
    Comput Appl Biosci; 1990 Oct; 6(4):309-18. PubMed ID: 1701685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New techniques for mining frequent patterns in unordered trees.
    Zhang S; Du Z; Wang JT
    IEEE Trans Cybern; 2015 Jun; 45(6):1113-25. PubMed ID: 25137740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On comparing neuronal morphologies with the constrained tree-edit-distance.
    Gillette TA; Grefenstette JJ
    Neuroinformatics; 2009 Sep; 7(3):191-4. PubMed ID: 19636974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Practical Algorithms for Rooted Subtree Prune and Regraft (rSPR) Distance and Hybridization Number.
    Yamada K; Chen ZZ; Wang L
    J Comput Biol; 2020 Sep; 27(9):1422-1432. PubMed ID: 32048865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seeded tree alignment.
    Lozano A; Pinter RY; Rokhlenko O; Valiente G; Ziv-Ukelson M
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(4):503-13. PubMed ID: 18989038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing Manhattan Path-Difference Median Trees: A Practical Local Search Approach.
    Markin A; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1063-1076. PubMed ID: 28650824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.