These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23058289)

  • 1. Sphingobium sp. SYK-6 LigG involved in lignin degradation is structurally and biochemically related to the glutathione transferase ω class.
    Meux E; Prosper P; Masai E; Mulliert G; Dumarçay S; Morel M; Didierjean C; Gelhaye E; Favier F
    FEBS Lett; 2012 Nov; 586(22):3944-50. PubMed ID: 23058289
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Kontur WS; Bingman CA; Olmsted CN; Wassarman DR; Ulbrich A; Gall DL; Smith RW; Yusko LM; Fox BG; Noguera DR; Coon JJ; Donohue TJ
    J Biol Chem; 2018 Apr; 293(14):4955-4968. PubMed ID: 29449375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of two glutathione S-transferases in the final step of the β-aryl ether cleavage pathway in Sphingobium sp. strain SYK-6.
    Higuchi Y; Sato D; Kamimura N; Masai E
    Sci Rep; 2020 Nov; 10(1):20614. PubMed ID: 33244017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trametes versicolor glutathione transferase Xi 3, a dual Cys-GST with catalytic specificities of both Xi and Omega classes.
    Schwartz M; Perrot T; Deroy A; Roret T; Morel-Rouhier M; Mulliert G; Gelhaye E; Favier F; Didierjean C
    FEBS Lett; 2018 Sep; 592(18):3163-3172. PubMed ID: 30112765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereochemical features of glutathione-dependent enzymes in the Sphingobium sp. strain SYK-6 β-aryl etherase pathway.
    Gall DL; Kim H; Lu F; Donohue TJ; Noguera DR; Ralph J
    J Biol Chem; 2014 Mar; 289(12):8656-67. PubMed ID: 24509858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the third glutathione S-transferase gene involved in enantioselective cleavage of the β-aryl ether by Sphingobium sp. strain SYK-6.
    Tanamura K; Abe T; Kamimura N; Kasai D; Hishiyama S; Otsuka Y; Nakamura M; Kajita S; Katayama Y; Fukuda M; Masai E
    Biosci Biotechnol Biochem; 2011; 75(12):2404-7. PubMed ID: 22146726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural determinants of glutathione transferases with azathioprine activity identified by DNA shuffling of alpha class members.
    Kurtovic S; Modén O; Shokeer A; Mannervik B
    J Mol Biol; 2008 Feb; 375(5):1365-79. PubMed ID: 18155239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional structure of a Bombyx mori Omega-class glutathione transferase.
    Yamamoto K; Suzuki M; Higashiura A; Nakagawa A
    Biochem Biophys Res Commun; 2013 Sep; 438(4):588-93. PubMed ID: 23939046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of the domain interface contributes towards the catalytic function at the H-site of class alpha glutathione transferase A1-1.
    Balchin D; Fanucchi S; Achilonu I; Adamson RJ; Burke J; Fernandes M; Gildenhuys S; Dirr HW
    Biochim Biophys Acta; 2010 Dec; 1804(12):2228-33. PubMed ID: 20833278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6.
    Pereira JH; Heins RA; Gall DL; McAndrew RP; Deng K; Holland KC; Donohue TJ; Noguera DR; Simmons BA; Sale KL; Ralph J; Adams PD
    J Biol Chem; 2016 May; 291(19):10228-38. PubMed ID: 26940872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic Mechanism of Aryl-Ether Bond Cleavage in Lignin by LigF and LigG.
    Prates ET; Crowley MF; Skaf MS; Beckham GT
    J Phys Chem B; 2019 Dec; 123(48):10142-10151. PubMed ID: 31687816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Recent advances in Sphingobium sp. SYK-6 for lignin aromatic compounds degradation--a review].
    Zhang X; Peng X; Masai E
    Wei Sheng Wu Xue Bao; 2014 Aug; 54(8):854-67. PubMed ID: 25345016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of Glycine max glutathione transferase in complex with glutathione: investigation of the mechanism operating by the Tau class glutathione transferases.
    Axarli I; Dhavala P; Papageorgiou AC; Labrou NE
    Biochem J; 2009 Aug; 422(2):247-56. PubMed ID: 19538182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism.
    Thom R; Dixon DP; Edwards R; Cole DJ; Lapthorn AJ
    J Mol Biol; 2001 May; 308(5):949-62. PubMed ID: 11352584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bacterial
    Kuatsjah E; Chan ACK; Kobylarz MJ; Murphy MEP; Eltis LD
    J Biol Chem; 2017 Nov; 292(44):18290-18302. PubMed ID: 28935670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refined crystal structure of porcine class Pi glutathione S-transferase (pGST P1-1) at 2.1 A resolution.
    Dirr H; Reinemer P; Huber R
    J Mol Biol; 1994 Oct; 243(1):72-92. PubMed ID: 7932743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic properties of glutathione-binding residues in a tau class glutathione transferase (PtGSTU1) from Pinus tabulaeformis.
    Zeng QY; Wang XR
    FEBS Lett; 2005 May; 579(12):2657-62. PubMed ID: 15862305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases acting as 1-Cys thiol transferases.
    Garcerá A; Barreto L; Piedrafita L; Tamarit J; Herrero E
    Biochem J; 2006 Sep; 398(2):187-96. PubMed ID: 16709151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the hydrophobic substrate-binding site of the bacterial beta class glutathione transferase from Proteus mirabilis.
    Federici L; Masulli M; Di Ilio C; Allocati N
    Protein Eng Des Sel; 2010 Sep; 23(9):743-50. PubMed ID: 20663851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine 15 stabilizes an S(N)Ar reaction transition state and the binding of anionic ligands at the active site of human glutathione transferase A1-1.
    Gildenhuys S; Dobreva M; Kinsley N; Sayed Y; Burke J; Pelly S; Gordon GP; Sayed M; Sewell T; Dirr HW
    Biophys Chem; 2010 Feb; 146(2-3):118-25. PubMed ID: 19959275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.