These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2305876)

  • 1. Effects of epidermal growth factor on bone formation and resorption in vivo.
    Marie PJ; Hott M; Perheentupa J
    Am J Physiol; 1990 Feb; 258(2 Pt 1):E275-81. PubMed ID: 2305876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of bone matrix apposition by (3-amino-1-hydroxypropylidene)-1,1-bisphosphonate (AHPrBP) in the mouse.
    Marie PJ; Hott M; Garba MT
    Bone; 1985; 6(3):193-200. PubMed ID: 4027097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting effects of 1,25-dihydroxyvitamin D3 on bone matrix and mineral appositional rates in the mouse.
    Marie PJ; Hott M; Garba MT
    Metabolism; 1985 Aug; 34(8):777-83. PubMed ID: 3839559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-dose gestagens modulate bone resorption and formation and enhance estrogen-induced endosteal bone formation in the ovariectomized mouse.
    Bain SD; Jensen E; Celino DL; Bailey MC; Lantry MM; Edwards MW
    J Bone Miner Res; 1993 Feb; 8(2):219-30. PubMed ID: 8442440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition by aminohydroxypropylidene bisphosphonate (AHPrBP) of 1,25(OH)2 vitamin D3-induced stimulated bone turnover in the mouse.
    Marie PJ; Hott M; Garba MT
    Calcif Tissue Int; 1985 May; 37(3):268-75. PubMed ID: 3926276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suramin inhibits bone resorption and reduces osteoblast number in a neonatal mouse calvarial bone resorption assay.
    Walther MM; Kragel PJ; Trahan E; Venzon D; Blair HC; Schlesinger PH; Jamai-Dow C; Ewing MW; Myers CE; Linehan WM
    Endocrinology; 1992 Nov; 131(5):2263-70. PubMed ID: 1425426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats.
    Marie PJ; Hott M; Modrowski D; De Pollak C; Guillemain J; Deloffre P; Tsouderos Y
    J Bone Miner Res; 1993 May; 8(5):607-15. PubMed ID: 8511988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of calcitonin on the magnesium-induced bone resorption in the mouse.
    Marie PJ; Hott M
    Magnesium; 1987; 6(2):100-8. PubMed ID: 3573817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming growth factor-beta promotes epidermal growth factor-induced thyroid cell migration and follicle neoformation in collagen gel separable from cell proliferation.
    Nilsson M; Dahlman T; Westermark B; Westermark K
    Exp Cell Res; 1995 Oct; 220(2):257-65. PubMed ID: 7556432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-term effects of fluoride and strontium on bone formation and resorption in the mouse.
    Marie PJ; Hott M
    Metabolism; 1986 Jun; 35(6):547-51. PubMed ID: 3713515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of magnesium supplementation on bone turnover in the normal young mouse.
    Marie PJ; Travers R; Delvin EE
    Calcif Tissue Int; 1983 Sep; 35(6):755-61. PubMed ID: 6652550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal osteoclastic and osteoblastic responses to exogenous growth hormone in patients with postmenopausal spinal osteoporosis.
    Kassem M; Brixen K; Blum WF; Mosekilde L; Eriksen EF
    J Bone Miner Res; 1994 Sep; 9(9):1365-70. PubMed ID: 7817819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the bisphosphonate YM175 on bone mineral density, strength, structure, and turnover in ovariectomized beagles on concomitant dietary calcium restriction.
    Motoie H; Nakamura T; O'uchi N; Nishikawa H; Kanoh H; Abe T; Kawashima H
    J Bone Miner Res; 1995 Jun; 10(6):910-20. PubMed ID: 7572315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-dose estrogen inhibits bone resorption and stimulates bone formation in the ovariectomized mouse.
    Bain SD; Bailey MC; Celino DL; Lantry MM; Edwards MW
    J Bone Miner Res; 1993 Apr; 8(4):435-42. PubMed ID: 8475793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of skeletal aging using the 3H-proline topographic labeling method.
    Tonna EA
    Lab Invest; 1976 Sep; 35(3):221-34. PubMed ID: 183055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The anti-bone-resorptive agent calcitonin also acts in vitro to directly increase bone formation and bone cell proliferation.
    Farley JR; Tarbaux NM; Hall SL; Linkhart TA; Baylink DJ
    Endocrinology; 1988 Jul; 123(1):159-67. PubMed ID: 3383771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterotopic new bone formation causes resorption of the inductive bone matrix.
    Nilsson OS; Persson PE; Ekelund A
    Clin Orthop Relat Res; 1990 Aug; (257):280-5. PubMed ID: 2379365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-specific effects of a PPARgamma agonist, darglitazone, on bone in mice.
    Li M; Pan LC; Simmons HA; Li Y; Healy DR; Robinson BS; Ke HZ; Brown TA
    Bone; 2006 Oct; 39(4):796-806. PubMed ID: 16759917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 24R,25-dihydroxyvitamin D3 promotes bone formation without causing excessive resorption in hypophosphatemic mice.
    Ono T; Tanaka H; Yamate T; Nagai Y; Nakamura T; Seino Y
    Endocrinology; 1996 Jun; 137(6):2633-7. PubMed ID: 8641218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strontium ranelate: a dual mode of action rebalancing bone turnover in favour of bone formation.
    Marie PJ
    Curr Opin Rheumatol; 2006 Jun; 18 Suppl 1():S11-5. PubMed ID: 16735840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.