BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23059447)

  • 1. Automatic identification and quantitative morphometry of unstained spinal nerve using molecular hyperspectral imaging technology.
    Li Q; Chen Z; He X; Wang Y; Liu H; Xu Q
    Neurochem Int; 2012 Dec; 61(8):1375-84. PubMed ID: 23059447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation of nerve fibers using multi-level gradient watershed and fuzzy systems.
    Wang YY; Sun YN; Lin CC; Ju MS
    Artif Intell Med; 2012 Mar; 54(3):189-200. PubMed ID: 22239996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binary imaging analysis for comprehensive quantitative histomorphometry of peripheral nerve.
    Hunter DA; Moradzadeh A; Whitlock EL; Brenner MJ; Myckatyn TM; Wei CH; Tung TH; Mackinnon SE
    J Neurosci Methods; 2007 Oct; 166(1):116-24. PubMed ID: 17675163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tongue fissure extraction and classification using hyperspectral imaging technology.
    Li Q; Wang Y; Liu H; Sun Z; Liu Z
    Appl Opt; 2010 Apr; 49(11):2006-13. PubMed ID: 20389998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology.
    Li Q; Wang Y; Liu H; Guan Y; Xu L
    Comput Med Imaging Graph; 2011 Apr; 35(3):179-85. PubMed ID: 21030208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tongue color analysis and discrimination based on hyperspectral images.
    Li Q; Liu Z
    Comput Med Imaging Graph; 2009 Apr; 33(3):217-21. PubMed ID: 19157779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripheral nerve morphometry: Comparison between manual and semi-automated methods in the analysis of a small nerve.
    da Silva AP; Jordão CE; Fazan VP
    J Neurosci Methods; 2007 Jan; 159(1):153-7. PubMed ID: 16887196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical nerve morphometry.
    Urso-Baiarda F; Grobbelaar AO
    J Neurosci Methods; 2006 Sep; 156(1-2):333-41. PubMed ID: 16581137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved automatic detection and segmentation of cell nuclei in histopathology images.
    Al-Kofahi Y; Lassoued W; Lee W; Roysam B
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):841-52. PubMed ID: 19884070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of parameter-adapted segmentation methods for fluorescence micrographs.
    Held C; Palmisano R; Häberle L; Hensel M; Wittenberg T
    Cytometry A; 2011 Nov; 79(11):933-45. PubMed ID: 22002887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confocal DNA cytometry: a contour-based segmentation algorithm for automated three-dimensional image segmentation.
    Beliën JA; van Ginkel HA; Tekola P; Ploeger LS; Poulin NM; Baak JP; van Diest PJ
    Cytometry; 2002 Sep; 49(1):12-21. PubMed ID: 12210606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Quantitative electron microscopic studies on biopsy specimens of the sural nerve. I. The relations between the number of the myelin lamellae and axon circumference of the myelinated fibers].
    Tohgi H; Tsukagoshi H; Toyokura Y
    Rinsho Shinkeigaku; 1975 Sep; 15(9):642-50. PubMed ID: 1239355
    [No Abstract]   [Full Text] [Related]  

  • 13. Automated characterization of nerve fibers labeled fluorescently: determination of size, class and spatial distribution.
    Prodanov D; Feirabend HK
    Brain Res; 2008 Oct; 1233():35-50. PubMed ID: 18703026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated morphometric analysis in peripheral neuropathies.
    Campadelli P; Gangai C; Pasquale F
    Comput Biol Med; 1999 Mar; 29(2):147-56. PubMed ID: 10355739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitation of neurite growth parameters in explant cultures using a new image processing program.
    Shah A; Fischer C; Knapp CF; Sisken BF
    J Neurosci Methods; 2004 Jul; 136(2):123-31. PubMed ID: 15183264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A semi-automated method for identifying and measuring myelinated nerve fibers in scanning electron microscope images.
    More HL; Chen J; Gibson E; Donelan JM; Beg MF
    J Neurosci Methods; 2011 Sep; 201(1):149-58. PubMed ID: 21839777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic identification and morphometry of optic nerve fibers in electron microscopy images.
    Zhao X; Pan Z; Wu J; Zhou G; Zeng Y
    Comput Med Imaging Graph; 2010 Apr; 34(3):179-84. PubMed ID: 19796916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic identification of gray and white matter components in polarized light imaging.
    Dammers J; Breuer L; Axer M; Kleiner M; Eiben B; Grässel D; Dickscheid T; Zilles K; Amunts K; Shah NJ; Pietrzyk U
    Neuroimage; 2012 Jan; 59(2):1338-47. PubMed ID: 21875673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated multiscale morphometry of muscle disease from second harmonic generation microscopy using tensor-based image processing.
    Garbe CS; Buttgereit A; Schürmann S; Friedrich O
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):39-44. PubMed ID: 21908249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D parallel coordinate systems--a new data visualization method in the context of microscopy-based multicolor tissue cytometry.
    Streit M; Ecker RC; Osterreicher K; Steiner GE; Bischof H; Bangert C; Kopp T; Rogojanu R
    Cytometry A; 2006 Jul; 69(7):601-11. PubMed ID: 16680710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.