BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 23059447)

  • 21. Hyperspectral face recognition with spatiospectral information fusion and PLS regression.
    Uzair M; Mahmood A; Mian A
    IEEE Trans Image Process; 2015 Mar; 24(3):1127-37. PubMed ID: 25608305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic identification and morphometry of optic nerve fibers in electron microscopy images.
    Zhao X; Pan Z; Wu J; Zhou G; Zeng Y
    Comput Med Imaging Graph; 2010 Apr; 34(3):179-84. PubMed ID: 19796916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic identification of gray and white matter components in polarized light imaging.
    Dammers J; Breuer L; Axer M; Kleiner M; Eiben B; Grässel D; Dickscheid T; Zilles K; Amunts K; Shah NJ; Pietrzyk U
    Neuroimage; 2012 Jan; 59(2):1338-47. PubMed ID: 21875673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated multiscale morphometry of muscle disease from second harmonic generation microscopy using tensor-based image processing.
    Garbe CS; Buttgereit A; Schürmann S; Friedrich O
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):39-44. PubMed ID: 21908249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.
    Li Q; Zhou M; Liu H; Wang Y; Guo F
    Appl Spectrosc; 2015 Dec; 69(12):1372-80. PubMed ID: 26554882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modification of commercially available image analysis software for semi-automated qualitative analysis of axon regeneration and myelination in the rat sciatic nerve.
    Isaacs J; Mallu S; Batchelor M
    J Neurosci Methods; 2014 Aug; 233():45-9. PubMed ID: 24942280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D parallel coordinate systems--a new data visualization method in the context of microscopy-based multicolor tissue cytometry.
    Streit M; Ecker RC; Osterreicher K; Steiner GE; Bischof H; Bangert C; Kopp T; Rogojanu R
    Cytometry A; 2006 Jul; 69(7):601-11. PubMed ID: 16680710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Research of histochemical staining for identifying the function and morphology of fascicles in three-dimensional reconstruction of peripheral nerves].
    Luo P; Zhang Y; Qi J; Zhong Y; Liu X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Apr; 26(4):477-82. PubMed ID: 22568333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fully automated segmentation and morphometrical analysis of muscle fiber images.
    Kim YJ; Brox T; Feiden W; Weickert J
    Cytometry A; 2007 Jan; 71(1):8-15. PubMed ID: 17211880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of myelinated nerve fibers in the sixth cranial nerve of the rat: a quantitative electron microscope study.
    Hahn AF; Chang Y; Webster HD
    J Comp Neurol; 1987 Jun; 260(4):491-500. PubMed ID: 3611408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic morphometry of nerve histological sections.
    Romero E; Cuisenaire O; Denef JF; Delbeke J; Macq B; Veraart C
    J Neurosci Methods; 2000 Apr; 97(2):111-22. PubMed ID: 10788665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A supervised framework for the registration and segmentation of white matter fiber tracts.
    Mayer A; Zimmerman-Moreno G; Shadmi R; Batikoff A; Greenspan H
    IEEE Trans Med Imaging; 2011 Jan; 30(1):131-45. PubMed ID: 20716499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics.
    Fillard P; Pennec X; Arsigny V; Ayache N
    IEEE Trans Med Imaging; 2007 Nov; 26(11):1472-82. PubMed ID: 18041263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and segmentation of myelinated nerve fibers in a cross-sectional optical microscopic image using a deep learning model.
    Naito T; Nagashima Y; Taira K; Uchio N; Tsuji S; Shimizu J
    J Neurosci Methods; 2017 Nov; 291():141-149. PubMed ID: 28837816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated morphometric study of human peripheral nerves by image analysis.
    Torch S; Usson Y; Saxod R
    Pathol Res Pract; 1989 Nov; 185(5):567-71. PubMed ID: 2626366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphometric analysis of sural nerve in elderly diabetes mellitus.
    Kanda T
    Bull Tokyo Med Dent Univ; 1984 Dec; 31(4):209-24. PubMed ID: 6598419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphologic and morphometric evaluation of experimental acute crush injuries of the sciatic nerve of rats.
    Mazzer PY; Barbieri CH; Mazzer N; Fazan VP
    J Neurosci Methods; 2008 Aug; 173(2):249-58. PubMed ID: 18644327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic image analysis of the postnatal growth of axons and myelin sheaths in the tibial and peroneal nerves of the rabbit.
    Dolapchieva S; Eggers R; Kühnel W
    Ann Anat; 2000 Mar; 182(2):133-42. PubMed ID: 10755180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Color code identification in coded structured light.
    Zhang X; Li Y; Zhu L
    Appl Opt; 2012 Aug; 51(22):5340-56. PubMed ID: 22859022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intersubject variability in the analysis of diffusion tensor images at the group level: fractional anisotropy mapping and fiber tracking techniques.
    Müller HP; Unrath A; Riecker A; Pinkhardt EH; Ludolph AC; Kassubek J
    Magn Reson Imaging; 2009 Apr; 27(3):324-34. PubMed ID: 18701228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.