These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 23059525)
1. Contribution of a 300 kHz alternating magnetic field on magnetic hyperthermia treatment of HepG2 cells. Wang X; Chen Y; Huang C; Wang X; Zhao L; Zhang X; Tang J Bioelectromagnetics; 2013 Feb; 34(2):95-103. PubMed ID: 23059525 [TBL] [Abstract][Full Text] [Related]
2. Magnetic stent hyperthermia for esophageal cancer: an in vitro investigation in the ECA-109 cell line. Liu JY; Zhao LY; Wang YY; Li DY; Tao D; Li LY; Tang JT Oncol Rep; 2012 Mar; 27(3):791-7. PubMed ID: 22200741 [TBL] [Abstract][Full Text] [Related]
3. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808 [TBL] [Abstract][Full Text] [Related]
4. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles. Wang L; Dong J; Ouyang W; Wang X; Tang J Oncol Rep; 2012 Mar; 27(3):719-26. PubMed ID: 22134718 [TBL] [Abstract][Full Text] [Related]
5. Control of the temperature rise in magnetic hyperthermia with use of an external static magnetic field. Murase K; Takata H; Takeuchi Y; Saito S Phys Med; 2013 Nov; 29(6):624-30. PubMed ID: 22985766 [TBL] [Abstract][Full Text] [Related]
6. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Li FR; Yan WH; Guo YH; Qi H; Zhou HX Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033 [TBL] [Abstract][Full Text] [Related]
7. A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles. Lacroix LM; Carrey J; Respaud M Rev Sci Instrum; 2008 Sep; 79(9):093909. PubMed ID: 19044430 [TBL] [Abstract][Full Text] [Related]
8. Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia. Zhang J; Dewilde AH; Chinn P; Foreman A; Barry S; Kanne D; Braunhut SJ Int J Hyperthermia; 2011; 27(7):682-97. PubMed ID: 21992561 [TBL] [Abstract][Full Text] [Related]
9. [A method of showing thermal effect of iron oxide nanoparticles in alternating magnetic field]. Liu X; Xu B; Xia QS; Zhao TD; Tang JT Ai Zheng; 2005 Sep; 24(9):1148-50. PubMed ID: 16159444 [TBL] [Abstract][Full Text] [Related]
10. Comparative effects of magnetic and water-based hyperthermia treatments on human osteosarcoma cells. Herea DD; Danceanu C; Radu E; Labusca L; Lupu N; Chiriac H Int J Nanomedicine; 2018; 13():5743-5751. PubMed ID: 30310277 [TBL] [Abstract][Full Text] [Related]
11. Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Johannsen M; Thiesen B; Jordan A; Taymoorian K; Gneveckow U; Waldöfner N; Scholz R; Koch M; Lein M; Jung K; Loening SA Prostate; 2005 Aug; 64(3):283-92. PubMed ID: 15726645 [TBL] [Abstract][Full Text] [Related]
12. Magnetic mesoporous silica spheres for hyperthermia therapy. Martín-Saavedra FM; Ruíz-Hernández E; Boré A; Arcos D; Vallet-Regí M; Vilaboa N Acta Biomater; 2010 Dec; 6(12):4522-31. PubMed ID: 20601238 [TBL] [Abstract][Full Text] [Related]
13. Combining CXCR4-targeted and nontargeted nanoparticles for effective unassisted in vitro magnetic hyperthermia. Vilas-Boas V; Espiña B; Kolen'ko YV; Bañobre-Lopez M; Duarte JA; Martins VC; Petrovykh DY; Freitas PP; Carvalho FD Biointerphases; 2018 Feb; 13(1):011005. PubMed ID: 29402091 [TBL] [Abstract][Full Text] [Related]
14. Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer. Shoshiashvili L; Shamatava I; Kakulia D; Shubitidze F Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980560 [TBL] [Abstract][Full Text] [Related]
15. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells. Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of hyperthermia of magnetic nanoparticles by dehydrating DNA. Yu L; Liu J; Wu K; Klein T; Jiang Y; Wang JP Sci Rep; 2014 Nov; 4():7216. PubMed ID: 25427561 [TBL] [Abstract][Full Text] [Related]
17. Hyperthermia generated by magnetic nanoparticles for effective treatment of disseminated peritoneal cancer in an orthotopic nude-mouse model. Matsumi Y; Kagawa T; Yano S; Tazawa H; Shigeyasu K; Takeda S; Ohara T; Aono H; Hoffman RM; Fujiwara T; Kishimoto H Cell Cycle; 2021 Jun; 20(12):1122-1133. PubMed ID: 34110969 [TBL] [Abstract][Full Text] [Related]
18. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells. Minaei SE; Khoei S; Khoee S; Vafashoar F; Mahabadi VP Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():575-587. PubMed ID: 31029351 [TBL] [Abstract][Full Text] [Related]
19. ROS-induced HepG2 cell death from hyperthermia using magnetic hydroxyapatite nanoparticles. Yang CT; Li KY; Meng FQ; Lin JF; Young IC; Ivkov R; Lin FH Nanotechnology; 2018 Sep; 29(37):375101. PubMed ID: 29920184 [TBL] [Abstract][Full Text] [Related]
20. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression. Tang QS; Zhang DS; Cong XM; Wan ML; Jin LQ Biomaterials; 2008 Jun; 29(17):2673-9. PubMed ID: 18396332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]