BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 23059547)

  • 1. Identification of potential drug targets in Yersinia pestis using metabolic pathway analysis: MurE ligase as a case study.
    Sharma A; Pan A
    Eur J Med Chem; 2012 Nov; 57():185-95. PubMed ID: 23059547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular modeling studies of Yersinia pestis dihydrofolate reductase.
    Oliveira AA; Rennó MN; de Matos CA; Bertuzzi MD; Ramalho TC; Fraga CA; França TC
    J Biomol Struct Dyn; 2011 Oct; 29(2):351-67. PubMed ID: 21875154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein interaction network analysis--approach for potential drug target identification in Mycobacterium tuberculosis.
    Kushwaha SK; Shakya M
    J Theor Biol; 2010 Jan; 262(2):284-94. PubMed ID: 19833135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis.
    Anishetty S; Pulimi M; Pennathur G
    Comput Biol Chem; 2005 Oct; 29(5):368-78. PubMed ID: 16213791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yersinia pestis Yop secretion protein F: purification, characterization, and protective efficacy against bubonic plague.
    Swietnicki W; Powell BS; Goodin J
    Protein Expr Purif; 2005 Jul; 42(1):166-72. PubMed ID: 15939303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Characterisation of the Beta-Ketoacyl-Acyl Carrier Protein Synthases, FabF and FabH, of Yersinia pestis.
    Nanson JD; Himiari Z; Swarbrick CM; Forwood JK
    Sci Rep; 2015 Oct; 5():14797. PubMed ID: 26469877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-scale reconstruction of the metabolic network in Yersinia pestis, strain 91001.
    Navid A; Almaas E
    Mol Biosyst; 2009 Apr; 5(4):368-75. PubMed ID: 19396373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel small molecule inhibitors of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) kinase of Gram-negative bacteria.
    Tang M; Odejinmi SI; Allette YM; Vankayalapati H; Lai K
    Bioorg Med Chem; 2011 Oct; 19(19):5886-95. PubMed ID: 21903402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting essential cell wall lipase Rv3802c for potential therapeutics against tuberculosis.
    Saravanan P; Avinash H; Dubey VK; Patra S
    J Mol Graph Model; 2012 Sep; 38():235-42. PubMed ID: 23085165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic pathway analysis approach: identification of novel therapeutic target against methicillin resistant Staphylococcus aureus.
    Uddin R; Saeed K; Khan W; Azam SS; Wadood A
    Gene; 2015 Feb; 556(2):213-26. PubMed ID: 25436466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yersinia pestis and approaches to targeting its outer protein H protein-tyrosine phosphatase (YopH).
    Bahta M; Burke TR
    Curr Med Chem; 2012; 19(33):5726-34. PubMed ID: 22934808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular modeling toward selective inhibitors of dihydrofolate reductase from the biological warfare agent Bacillus anthracis.
    Giacoppo JO; Mancini DT; Guimarães AP; Gonçalves AS; da Cunha EF; França TC; Ramalho TC
    Eur J Med Chem; 2015 Feb; 91():63-71. PubMed ID: 24985033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of autotransporter proteins of Yersinia pestis KIM.
    Yen YT; Karkal A; Bhattacharya M; Fernandez RC; Stathopoulos C
    Mol Membr Biol; 2007; 24(1):28-40. PubMed ID: 17453411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico approach towards identification of potential inhibitors of Helicobacter pylori DapE.
    Mandal RS; Das S
    J Biomol Struct Dyn; 2015; 33(7):1460-73. PubMed ID: 25204745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis.
    Ferreras JA; Ryu JS; Di Lello F; Tan DS; Quadri LE
    Nat Chem Biol; 2005 Jun; 1(1):29-32. PubMed ID: 16407990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.
    Matero P; Pasanen T; Laukkanen R; Tissari P; Tarkka E; Vaara M; Skurnik M
    APMIS; 2009 Jan; 117(1):34-44. PubMed ID: 19161535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct classes of glyoxalase I: metal specificity of the Yersinia pestis, Pseudomonas aeruginosa and Neisseria meningitidis enzymes.
    Sukdeo N; Clugston SL; Daub E; Honek JF
    Biochem J; 2004 Nov; 384(Pt 1):111-7. PubMed ID: 15270717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of Pla protein from the biological warfare agent Yersinia pestis: docking and molecular dynamics of interactions with the mammalian plasminogen system.
    Ruback E; Lobo LA; França TC; Pascutti PG
    J Biomol Struct Dyn; 2013; 31(5):477-84. PubMed ID: 22881127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and type III-dependent secretion of the Yersinia pestis insecticidal-like proteins.
    Gendlina I; Held KG; Bartra SS; Gallis BM; Doneanu CE; Goodlett DR; Plano GV; Collins CM
    Mol Microbiol; 2007 Jun; 64(5):1214-27. PubMed ID: 17542916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function analysis of Yersinia pestis YopM's interaction with alpha-thrombin to rule on its significance in systemic plague and to model YopM's mechanism of binding host proteins.
    Hines J; Skrzypek E; Kajava AV; Straley SC
    Microb Pathog; 2001 Apr; 30(4):193-209. PubMed ID: 11312613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.