BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23060071)

  • 21. The Use of
    Cook EC; Usher GA; Showalter SA
    Methods Enzymol; 2018; 611():81-100. PubMed ID: 30471706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMR of intrinsically disordered proteins: A note on the application of
    Kumar A; Wiedemann C; Bellstedt P; Ramachandran R; Ohlenschläger O
    J Magn Reson; 2022 Apr; 337():107166. PubMed ID: 35245815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein.
    Żerko S; Byrski P; Włodarczyk-Pruszyński P; Górka M; Ledolter K; Masliah E; Konrat R; Koźmiński W
    J Biomol NMR; 2016 Aug; 65(3-4):193-203. PubMed ID: 27430223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amino acid type identification in NMR spectra of proteins via beta- and gamma-carbon edited experiments.
    Pantoja-Uceda D; Santoro J
    J Magn Reson; 2008 Dec; 195(2):187-95. PubMed ID: 18829356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. (13)C-detected NMR experiments for automatic resonance assignment of IDPs and multiple-fixing SMFT processing.
    Dziekański P; Grudziąż K; Jarvoll P; Koźmiński W; Zawadzka-Kazimierczuk A
    J Biomol NMR; 2015 Jun; 62(2):179-90. PubMed ID: 25902761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 4D non-uniformly sampled HCBCACON and ¹J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins.
    Nováček J; Haba NY; Chill JH; Zídek L; Sklenář V
    J Biomol NMR; 2012 Jun; 53(2):139-48. PubMed ID: 22580891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amino-acid selective experiments on uniformly 13C and 15N labeled proteins by MAS NMR: Filtering of lysines and arginines.
    Jehle S; Rehbein K; Diehl A; van Rossum BJ
    J Magn Reson; 2006 Dec; 183(2):324-8. PubMed ID: 16990042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MUSIC and aromatic residues: amino acid type-selective (1)H-(15)N correlations, III.
    Schubert M; Oschkinat H; Schmieder P
    J Magn Reson; 2001 Dec; 153(2):186-92. PubMed ID: 11740893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping the potential energy landscape of intrinsically disordered proteins at amino acid resolution.
    Ozenne V; Schneider R; Yao M; Huang JR; Salmon L; Zweckstetter M; Jensen MR; Blackledge M
    J Am Chem Soc; 2012 Sep; 134(36):15138-48. PubMed ID: 22901047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linear discriminant analysis reveals hidden patterns in NMR chemical shifts of intrinsically disordered proteins.
    Romero JA; Putko P; Urbańczyk M; Kazimierczuk K; Zawadzka-Kazimierczuk A
    PLoS Comput Biol; 2022 Oct; 18(10):e1010258. PubMed ID: 36201530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMR Methods for the Study of Instrinsically Disordered Proteins Structure, Dynamics, and Interactions: General Overview and Practical Guidelines.
    Brutscher B; Felli IC; Gil-Caballero S; Hošek T; Kümmerle R; Piai A; Pierattelli R; Sólyom Z
    Adv Exp Med Biol; 2015; 870():49-122. PubMed ID: 26387100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 13C direct detected COCO-TOCSY: a tool for sequence specific assignment and structure determination in protonless NMR experiments.
    Balayssac S; Jiménez B; Piccioli M
    J Magn Reson; 2006 Oct; 182(2):325-9. PubMed ID: 16844393
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MUSIC, selective pulses, and tuned delays: amino acid type-selective (1)H-(15)N correlations, II.
    Schubert M; Oschkinat H; Schmieder P
    J Magn Reson; 2001 Jan; 148(1):61-72. PubMed ID: 11133277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-molecule fluorescence studies of intrinsically disordered proteins.
    Ferreon AC; Moran CR; Gambin Y; Deniz AA
    Methods Enzymol; 2010; 472():179-204. PubMed ID: 20580965
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synergistic folding of two intrinsically disordered proteins: searching for conformational selection.
    Ganguly D; Zhang W; Chen J
    Mol Biosyst; 2012 Jan; 8(1):198-209. PubMed ID: 21766125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional correlated accordion NMR spectroscopy of proteins.
    Ding K; Ithychanda S; Qin J
    J Magn Reson; 2006 Jun; 180(2):203-9. PubMed ID: 16530439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DEPT spectral editing in HCCONH-type experiments. Application to fast protein backbone and side chain assignment.
    Brutscher B
    J Magn Reson; 2004 Apr; 167(2):178-84. PubMed ID: 15040974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile backbone (1H, 15N, 13Ca, and 13C') assignment of 13C/15N-labeled proteins using orthogonal projection planes of HNN and HN(C)N experiments and its automation.
    Kumar D; Borkar A; Hosur RV
    Magn Reson Chem; 2012 May; 50(5):357-63. PubMed ID: 22508472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins.
    Mäntylahti S; Hellman M; Permi P
    J Biomol NMR; 2011 Feb; 49(2):99-109. PubMed ID: 21259120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assignment of congested NMR spectra: carbonyl backbone enrichment via the Entner-Doudoroff pathway.
    Goldbourt A; Day LA; McDermott AE
    J Magn Reson; 2007 Dec; 189(2):157-65. PubMed ID: 17900951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.