These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 23060192)

  • 1. Retinal waves coordinate patterned activity throughout the developing visual system.
    Ackman JB; Burbridge TJ; Crair MC
    Nature; 2012 Oct; 490(7419):219-25. PubMed ID: 23060192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina.
    Cang J; RenterĂ­a RC; Kaneko M; Liu X; Copenhagen DR; Stryker MP
    Neuron; 2005 Dec; 48(5):797-809. PubMed ID: 16337917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in v1.
    Huberman AD; Speer CM; Chapman B
    Neuron; 2006 Oct; 52(2):247-54. PubMed ID: 17046688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epibatidine application in vitro blocks retinal waves without silencing all retinal ganglion cell action potentials in developing retina of the mouse and ferret.
    Sun C; Speer CM; Wang GY; Chapman B; Chalupa LM
    J Neurophysiol; 2008 Dec; 100(6):3253-63. PubMed ID: 18922954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition in retinogeniculate patterning driven by spontaneous activity.
    Penn AA; Riquelme PA; Feller MB; Shatz CJ
    Science; 1998 Mar; 279(5359):2108-12. PubMed ID: 9516112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular development of the lateral geniculate nucleus in the absence of retinal waves during the time of retinal axon eye-specific segregation.
    Iwai L; Kawasaki H
    Neuroscience; 2009 Apr; 159(4):1326-37. PubMed ID: 19409202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An instructive role for retinal waves in the development of retinogeniculate connectivity.
    Stellwagen D; Shatz CJ
    Neuron; 2002 Jan; 33(3):357-67. PubMed ID: 11832224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An instructive role for patterned spontaneous retinal activity in mouse visual map development.
    Xu HP; Furman M; Mineur YS; Chen H; King SL; Zenisek D; Zhou ZJ; Butts DA; Tian N; Picciotto MR; Crair MC
    Neuron; 2011 Jun; 70(6):1115-27. PubMed ID: 21689598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse.
    Maccione A; Hennig MH; Gandolfo M; Muthmann O; van Coppenhagen J; Eglen SJ; Berdondini L; Sernagor E
    J Physiol; 2014 Apr; 592(7):1545-63. PubMed ID: 24366261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral and central inputs shape network dynamics in the developing visual cortex in vivo.
    Siegel F; Heimel JA; Peters J; Lohmann C
    Curr Biol; 2012 Feb; 22(3):253-8. PubMed ID: 22264606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switching retinogeniculate axon laterality leads to normal targeting but abnormal eye-specific segregation that is activity dependent.
    Rebsam A; Petros TJ; Mason CA
    J Neurosci; 2009 Nov; 29(47):14855-63. PubMed ID: 19940181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous Retinal Waves Can Generate Long-Range Horizontal Connectivity in Visual Cortex.
    Kim J; Song M; Jang J; Paik SB
    J Neurosci; 2020 Aug; 40(34):6584-6599. PubMed ID: 32680939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Slow activity transients" in infant rat visual cortex: a spreading synchronous oscillation patterned by retinal waves.
    Colonnese MT; Khazipov R
    J Neurosci; 2010 Mar; 30(12):4325-37. PubMed ID: 20335468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epibatidine blocks eye-specific segregation in ferret dorsal lateral geniculate nucleus during stage III retinal waves.
    Davis ZW; Sun C; Derieg B; Chapman B; Cheng HJ
    PLoS One; 2015; 10(3):e0118783. PubMed ID: 25794280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse.
    Chandrasekaran AR; Plas DT; Gonzalez E; Crair MC
    J Neurosci; 2005 Jul; 25(29):6929-38. PubMed ID: 16033903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption and recovery of patterned retinal activity in the absence of acetylcholine.
    Stacy RC; Demas J; Burgess RW; Sanes JR; Wong RO
    J Neurosci; 2005 Oct; 25(41):9347-57. PubMed ID: 16221843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of Cholinergic Retinal Waves Alters Visual Cortex Development and Function.
    Burbridge TJ; Ratliff JM; Dwivedi D; Vrudhula U; Alvarado-Huerta F; Sjulson L; Ibrahim LA; Cheadle L; Fishell G; Batista-Brito R
    bioRxiv; 2024 Apr; ():. PubMed ID: 38644996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors.
    Burbridge TJ; Xu HP; Ackman JB; Ge X; Zhang Y; Ye MJ; Zhou ZJ; Xu J; Contractor A; Crair MC
    Neuron; 2014 Dec; 84(5):1049-64. PubMed ID: 25466916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sparsification of neuronal activity in the visual cortex at eye-opening.
    Rochefort NL; Garaschuk O; Milos RI; Narushima M; Marandi N; Pichler B; Kovalchuk Y; Konnerth A
    Proc Natl Acad Sci U S A; 2009 Sep; 106(35):15049-54. PubMed ID: 19706480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotinic acetylcholine receptor subtypes expression during rat retina development and their regulation by visual experience.
    Moretti M; Vailati S; Zoli M; Lippi G; Riganti L; Longhi R; Viegi A; Clementi F; Gotti C
    Mol Pharmacol; 2004 Jul; 66(1):85-96. PubMed ID: 15213299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.