These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 23060192)

  • 21. The Down syndrome critical region regulates retinogeniculate refinement.
    Blank M; Fuerst PG; Stevens B; Nouri N; Kirkby L; Warrier D; Barres BA; Feller MB; Huberman AD; Burgess RW; Garner CC
    J Neurosci; 2011 Apr; 31(15):5764-76. PubMed ID: 21490218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of cholinergic amacrine cells is visual activity-dependent in the postnatal mouse retina.
    Zhang J; Yang Z; Wu SM
    J Comp Neurol; 2005 Apr; 484(3):331-43. PubMed ID: 15739235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developmental expression of heteromeric nicotinic receptor subtypes in chick retina.
    Vailati S; Moretti M; Longhi R; Rovati GE; Clementi F; Gotti C
    Mol Pharmacol; 2003 Jun; 63(6):1329-37. PubMed ID: 12761343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direction-selective circuitry in rat retina develops independently of GABAergic, cholinergic and action potential activity.
    Sun L; Han X; He S
    PLoS One; 2011 May; 6(5):e19477. PubMed ID: 21573161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of early neural activity in the maturation of turtle retinal function.
    Sernagor E; Mehta V
    J Anat; 2001 Oct; 199(Pt 4):375-83. PubMed ID: 11693298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potentiation of L-type calcium channels reveals nonsynaptic mechanisms that correlate spontaneous activity in the developing mammalian retina.
    Singer JH; Mirotznik RR; Feller MB
    J Neurosci; 2001 Nov; 21(21):8514-22. PubMed ID: 11606640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cholinergic neural activity directs retinal layer-specific angiogenesis and blood retinal barrier formation.
    Weiner GA; Shah SH; Angelopoulos CM; Bartakova AB; Pulido RS; Murphy A; Nudleman E; Daneman R; Goldberg JL
    Nat Commun; 2019 Jun; 10(1):2477. PubMed ID: 31171770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina.
    Bansal A; Singer JH; Hwang BJ; Xu W; Beaudet A; Feller MB
    J Neurosci; 2000 Oct; 20(20):7672-81. PubMed ID: 11027228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glutamatergic synapse formation is promoted by α7-containing nicotinic acetylcholine receptors.
    Lozada AF; Wang X; Gounko NV; Massey KA; Duan J; Liu Z; Berg DK
    J Neurosci; 2012 May; 32(22):7651-61. PubMed ID: 22649244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wakefulness suppresses retinal wave-related neural activity in visual cortex.
    Mukherjee D; Yonk AJ; Sokoloff G; Blumberg MS
    J Neurophysiol; 2017 Aug; 118(2):1190-1197. PubMed ID: 28615335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early postnatal development of the visual cortex in mice with retinal degeneration.
    Himmelhan DK; Rawashdeh O; Oelschläger HHA
    Mech Dev; 2018 Jun; 151():1-9. PubMed ID: 29563063
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nicotinic Acetylcholine Receptors are Associated with Ketamine-induced Neuronal Apoptosis in the Developing Rat Retina.
    Gao L; Han J; Bai J; Dong J; Zhang S; Zhang M; Zheng J
    Neuroscience; 2018 Apr; 376():1-12. PubMed ID: 29427655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direction selectivity in the retina is established independent of visual experience and cholinergic retinal waves.
    Elstrott J; Anishchenko A; Greschner M; Sher A; Litke AM; Chichilnisky EJ; Feller MB
    Neuron; 2008 May; 58(4):499-506. PubMed ID: 18498732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light Prior to Eye Opening Promotes Retinal Waves and Eye-Specific Segregation.
    Tiriac A; Smith BE; Feller MB
    Neuron; 2018 Dec; 100(5):1059-1065.e4. PubMed ID: 30392793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increasing Spontaneous Retinal Activity before Eye Opening Accelerates the Development of Geniculate Receptive Fields.
    Davis ZW; Chapman B; Cheng HJ
    J Neurosci; 2015 Oct; 35(43):14612-23. PubMed ID: 26511250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spontaneous waves in the ventricular zone of developing mammalian retina.
    Syed MM; Lee S; He S; Zhou ZJ
    J Neurophysiol; 2004 May; 91(5):1999-2009. PubMed ID: 14681336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cholinergic modulation of spindle bursts in the neonatal rat visual cortex in vivo.
    Hanganu IL; Staiger JF; Ben-Ari Y; Khazipov R
    J Neurosci; 2007 May; 27(21):5694-705. PubMed ID: 17522314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retinal waves trigger spindle bursts in the neonatal rat visual cortex.
    Hanganu IL; Ben-Ari Y; Khazipov R
    J Neurosci; 2006 Jun; 26(25):6728-36. PubMed ID: 16793880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elucidating the role of AII amacrine cells in glutamatergic retinal waves.
    Firl A; Ke JB; Zhang L; Fuerst PG; Singer JH; Feller MB
    J Neurosci; 2015 Jan; 35(4):1675-86. PubMed ID: 25632142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direction-selective ganglion cells show symmetric participation in retinal waves during development.
    Elstrott J; Feller MB
    J Neurosci; 2010 Aug; 30(33):11197-201. PubMed ID: 20720127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.