BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23060629)

  • 1. Increased phosphorylated p38 mitogen-activated protein kinase in COPD lungs.
    Gaffey K; Reynolds S; Plumb J; Kaur M; Singh D
    Eur Respir J; 2013 Jul; 42(1):28-41. PubMed ID: 23060629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased activation of p38 MAPK in COPD.
    Renda T; Baraldo S; Pelaia G; Bazzan E; Turato G; Papi A; Maestrelli P; Maselli R; Vatrella A; Fabbri LM; Zuin R; Marsico SA; Saetta M
    Eur Respir J; 2008 Jan; 31(1):62-9. PubMed ID: 17959643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p38alpha-selective mitogen-activated protein kinase inhibitor SD-282 reduces inflammation in a subchronic model of tobacco smoke-induced airway inflammation.
    Medicherla S; Fitzgerald MF; Spicer D; Woodman P; Ma JY; Kapoun AM; Chakravarty S; Dugar S; Protter AA; Higgins LS
    J Pharmacol Exp Ther; 2008 Mar; 324(3):921-9. PubMed ID: 18056868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospho-p38 MAPK expression in COPD patients and asthmatics and in challenged bronchial epithelium.
    Vallese D; Ricciardolo FL; Gnemmi I; Casolari P; Brun P; Sorbello V; Capelli A; Cappello F; Cavallesco GN; Papi A; Chung KF; Balbi B; Adcock IM; Caramori G; Di Stefano A
    Respiration; 2015; 89(4):329-42. PubMed ID: 25791156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity of sputum p38 MAPK is correlated with airway inflammation and reduced FEV1 in COPD patients.
    Huang C; Xie M; He X; Gao H
    Med Sci Monit; 2013 Dec; 19():1229-35. PubMed ID: 24382347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-induced augmentation of p38 MAPK phosphorylation in mouse lung.
    Li Z; Li J; Bu X; Liu X; Tankersley CG; Wang C; Huang K
    Exp Gerontol; 2011 Aug; 46(8):694-702. PubMed ID: 21570457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resveratrol impairs the release of steroid-resistant inflammatory cytokines from human airway smooth muscle cells in chronic obstructive pulmonary disease.
    Knobloch J; Sibbing B; Jungck D; Lin Y; Urban K; Stoelben E; Strauch J; Koch A
    J Pharmacol Exp Ther; 2010 Dec; 335(3):788-98. PubMed ID: 20801891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The FGL2/fibroleukin prothrombinase is involved in alveolar macrophage activation in COPD through the MAPK pathway.
    Liu Y; Xu S; Xiao F; Xiong Y; Wang X; Gao S; Yan W; Ning Q
    Biochem Biophys Res Commun; 2010 May; 396(2):555-61. PubMed ID: 20438701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IL-32, a novel proinflammatory cytokine in chronic obstructive pulmonary disease.
    Calabrese F; Baraldo S; Bazzan E; Lunardi F; Rea F; Maestrelli P; Turato G; Lokar-Oliani K; Papi A; Zuin R; Sfriso P; Balestro E; Dinarello CA; Saetta M
    Am J Respir Crit Care Med; 2008 Nov; 178(9):894-901. PubMed ID: 18703789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong inhibition of TNF-alpha production and inhibition of IL-8 and COX-2 mRNA expression in monocyte-derived macrophages by RWJ 67657, a p38 mitogen-activated protein kinase (MAPK) inhibitor.
    Westra J; Doornbos-van der Meer B; de Boer P; van Leeuwen MA; van Rijswijk MH; Limburg PC
    Arthritis Res Ther; 2004; 6(4):R384-92. PubMed ID: 15225374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bronchial epithelial cells produce CXCL1 in response to LPS and TNFα: A potential role in the pathogenesis of COPD.
    Inui T; Watanabe M; Nakamoto K; Sada M; Hirata A; Nakamura M; Honda K; Ogawa Y; Takata S; Yokoyama T; Saraya T; Kurai D; Wada H; Ishii H; Takizawa H
    Exp Lung Res; 2018 Sep; 44(7):323-331. PubMed ID: 30676127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversal of corticosteroid insensitivity by p38 MAPK inhibition in peripheral blood mononuclear cells from COPD.
    Khorasani N; Baker J; Johnson M; Chung KF; Bhavsar PK
    Int J Chron Obstruct Pulmon Dis; 2015; 10():283-91. PubMed ID: 25678784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of AZD7624 for prevention of exacerbations in COPD: a randomized controlled trial.
    Patel NR; Cunoosamy DM; Fagerås M; Taib Z; Asimus S; Hegelund-Myrbäck T; Lundin S; Pardali K; Kurian N; Ersdal E; Kristensson C; Korsback K; Palmér R; Brown MN; Greenaway S; Siew L; Clarke GW; Rennard SI; Make BJ; Wise RA; Jansson P
    Int J Chron Obstruct Pulmon Dis; 2018; 13():1009-1019. PubMed ID: 29628759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-specific activation profile of extracellular signal-regulated kinase 1/2, Jun N-terminal kinase, and p38 mitogen-activated protein kinases in asthmatic airways.
    Liu W; Liang Q; Balzar S; Wenzel S; Gorska M; Alam R
    J Allergy Clin Immunol; 2008 Apr; 121(4):893-902.e2. PubMed ID: 18395552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential anti-inflammatory effects of budesonide and a p38 MAPK inhibitor AZD7624 on COPD pulmonary cells.
    Higham A; Karur P; Jackson N; Cunoosamy DM; Jansson P; Singh D
    Int J Chron Obstruct Pulmon Dis; 2018; 13():1279-1288. PubMed ID: 29719383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD147 increases mucus secretion induced by cigarette smoke in COPD.
    Yu Q; Yang D; Chen X; Chen Q
    BMC Pulm Med; 2019 Feb; 19(1):29. PubMed ID: 30727993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1α,25-Dihydroxyvitamin D3 Induces Neutrophil Apoptosis through the p38 MAPK Signaling Pathway in Chronic Obstructive Pulmonary Disease Patients.
    Yang H; Long F; Zhang Y; Yu R; Zhang P; Li W; Li S; Jin X; Xia J; Dong L; Zhu N; Huang Y; Gong Y; Chen X
    PLoS One; 2015; 10(4):e0120515. PubMed ID: 25905635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential tissue expression and activation of p38 MAPK alpha, beta, gamma, and delta isoforms in rheumatoid arthritis.
    Korb A; Tohidast-Akrad M; Cetin E; Axmann R; Smolen J; Schett G
    Arthritis Rheum; 2006 Sep; 54(9):2745-56. PubMed ID: 16947383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of IL-6 in co-culture of bronchial epithelial cells and eosinophils is regulated by p38 MAPK and NF-kappaB.
    Wang CB; Wong CK; Ip WK; Li ML; Tian YP; Lam CW
    Allergy; 2005 Nov; 60(11):1378-85. PubMed ID: 16197469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epithelial cell senescence impairs repair process and exacerbates inflammation after airway injury.
    Zhou F; Onizawa S; Nagai A; Aoshiba K
    Respir Res; 2011 Jun; 12(1):78. PubMed ID: 21663649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.