These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 23060764)

  • 1. Action selection performance of a reconfigurable basal ganglia inspired model with Hebbian-Bayesian Go-NoGo connectivity.
    Berthet P; Hellgren-Kotaleski J; Lansner A
    Front Behav Neurosci; 2012; 6():65. PubMed ID: 23060764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity.
    Berthet P; Lindahl M; Tully PJ; Hellgren-Kotaleski J; Lansner A
    Front Neural Circuits; 2016; 10():53. PubMed ID: 27493625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phasic Dopamine Changes and Hebbian Mechanisms during Probabilistic Reversal Learning in Striatal Circuits: A Computational Study.
    Schirru M; Véronneau-Veilleux F; Nekka F; Ursino M
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Dual Role Hypothesis of the Cortico-Basal-Ganglia Pathways: Opponency and Temporal Difference Through Dopamine and Adenosine.
    Morita K; Kawaguchi Y
    Front Neural Circuits; 2018; 12():111. PubMed ID: 30687019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing reinforcement learning models by including direct and indirect pathways improves performance on striatal dependent tasks.
    Blackwell KT; Doya K
    PLoS Comput Biol; 2023 Aug; 19(8):e1011385. PubMed ID: 37594982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Striatal dopamine ramping may indicate flexible reinforcement learning with forgetting in the cortico-basal ganglia circuits.
    Morita K; Kato A
    Front Neural Circuits; 2014; 8():36. PubMed ID: 24782717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic stimulation in a computational model of the basal ganglia biases action selection and reward prediction error.
    Berthet P; Lansner A
    PLoS One; 2014; 9(3):e90578. PubMed ID: 24614169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Biologically Inspired Computational Model of Basal Ganglia in Action Selection.
    Baston C; Ursino M
    Comput Intell Neurosci; 2015; 2015():187417. PubMed ID: 26640481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actor-critic models of the basal ganglia: new anatomical and computational perspectives.
    Joel D; Niv Y; Ruppin E
    Neural Netw; 2002; 15(4-6):535-47. PubMed ID: 12371510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reward Based Motor Adaptation Mediated by Basal Ganglia.
    Kim T; Hamade KC; Todorov D; Barnett WH; Capps RA; Latash EM; Markin SN; Rybak IA; Molkov YI
    Front Comput Neurosci; 2017; 11():19. PubMed ID: 28408878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct Functions of the Primate Putamen Direct and Indirect Pathways in Adaptive Outcome-Based Action Selection.
    Ueda Y; Yamanaka K; Noritake A; Enomoto K; Matsumoto N; Yamada H; Samejima K; Inokawa H; Hori Y; Nakamura K; Kimura M
    Front Neuroanat; 2017; 11():66. PubMed ID: 28824386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basal ganglia role in learning rewarded actions and executing previously learned choices: Healthy and diseased states.
    Mulcahy G; Atwood B; Kuznetsov A
    PLoS One; 2020; 15(2):e0228081. PubMed ID: 32040519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of dopamine as a vector-valued feedback signal in the basal ganglia.
    Wärnberg E; Kumar A
    Proc Natl Acad Sci U S A; 2023 Aug; 120(32):e2221994120. PubMed ID: 37527344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning.
    Morita K; Kawaguchi Y
    Eur J Neurosci; 2015 Aug; 42(4):2003-21. PubMed ID: 26095906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological elucidation of basal ganglia circuits contributing reward prediction.
    Fujiyama F; Takahashi S; Karube F
    Front Neurosci; 2015; 9():6. PubMed ID: 25698913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface.
    Gurney KN; Humphries MD; Redgrave P
    PLoS Biol; 2015 Jan; 13(1):e1002034. PubMed ID: 25562526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the normative advantages of dopamine and striatal opponency for learning and choice.
    Jaskir A; Frank MJ
    Elife; 2023 Mar; 12():. PubMed ID: 36946371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Striatopallidal Neuron NMDA Receptors Control Synaptic Connectivity, Locomotor, and Goal-Directed Behaviors.
    Lambot L; Chaves Rodriguez E; Houtteman D; Li Y; Schiffmann SN; Gall D; de Kerchove d'Exaerde A
    J Neurosci; 2016 May; 36(18):4976-92. PubMed ID: 27147651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An imperfect dopaminergic error signal can drive temporal-difference learning.
    Potjans W; Diesmann M; Morrison A
    PLoS Comput Biol; 2011 May; 7(5):e1001133. PubMed ID: 21589888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine-mediated learning and switching in cortico-striatal circuit explain behavioral changes in reinforcement learning.
    Hong S; Hikosaka O
    Front Behav Neurosci; 2011; 5():15. PubMed ID: 21472026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.