BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 23060857)

  • 1. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets.
    Ulven T
    Front Endocrinol (Lausanne); 2012; 3():111. PubMed ID: 23060857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gut feelings in the islets: The role of the gut microbiome and the FFA2 and FFA3 receptors for short chain fatty acids on β-cell function and metabolic regulation.
    Teyani R; Moniri NH
    Br J Pharmacol; 2023 Dec; 180(24):3113-3129. PubMed ID: 37620991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved polar residues in transmembrane domains V, VI, and VII of free fatty acid receptor 2 and free fatty acid receptor 3 are required for the binding and function of short chain fatty acids.
    Stoddart LA; Smith NJ; Jenkins L; Brown AJ; Milligan G
    J Biol Chem; 2008 Nov; 283(47):32913-24. PubMed ID: 18801738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FFA2 and FFA3 in Metabolic Regulation.
    Tang C; Offermanns S
    Handb Exp Pharmacol; 2017; 236():205-220. PubMed ID: 27757760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3.
    Schmidt J; Smith NJ; Christiansen E; Tikhonova IG; Grundmann M; Hudson BD; Ward RJ; Drewke C; Milligan G; Kostenis E; Ulven T
    J Biol Chem; 2011 Mar; 286(12):10628-40. PubMed ID: 21220428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-chain fatty acid mitigates adenine-induced chronic kidney disease via FFA2 and FFA3 pathways.
    Mikami D; Kobayashi M; Uwada J; Yazawa T; Kamiyama K; Nishimori K; Nishikawa Y; Nishikawa S; Yokoi S; Kimura H; Kimura I; Taniguchi T; Iwano M
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Jun; 1865(6):158666. PubMed ID: 32061840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Specificity and Broad Multitarget Properties of Ligands for the Free Fatty Acid Receptors FFA3/GPR41 and FFA2/GPR43 and the Related Hydroxycarboxylic Acid Receptor HCA2/GPR109A.
    Bisenieks E; Vigante B; Petrovska R; Turovska B; Muhamadejev R; Soloduns V; Velena A; Pajuste K; Saso L; Klovins J; Duburs G; Mandrika I
    Pharmaceuticals (Basel); 2021 Sep; 14(10):. PubMed ID: 34681211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of GPCR Structures for Modelling of Free Fatty Acid Receptors.
    Tikhonova IG
    Handb Exp Pharmacol; 2017; 236():57-77. PubMed ID: 27757764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling of free fatty acid receptors 2 and 3 differs in colonic mucosa following selective agonism or coagonism by luminal propionate.
    Tough IR; Forbes S; Cox HM
    Neurogastroenterol Motil; 2018 Dec; 30(12):e13454. PubMed ID: 30136343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-chain fatty acid receptors involved in epithelial acetylcholine release in rat caecum.
    Ballout J; Akiba Y; Kaunitz JD; Diener M
    Eur J Pharmacol; 2021 Sep; 906():174292. PubMed ID: 34216575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agonism and allosterism: the pharmacology of the free fatty acid receptors FFA2 and FFA3.
    Milligan G; Stoddart LA; Smith NJ
    Br J Pharmacol; 2009 Sep; 158(1):146-53. PubMed ID: 19719777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-chain fatty acid sensing in rat duodenum.
    Akiba Y; Inoue T; Kaji I; Higashiyama M; Narimatsu K; Iwamoto K; Watanabe M; Guth PH; Engel E; Kuwahara A; Kaunitz JD
    J Physiol; 2015 Feb; 593(3):585-99. PubMed ID: 25433076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Pharmacology and Function of Receptors for Short-Chain Fatty Acids.
    Bolognini D; Tobin AB; Milligan G; Moss CE
    Mol Pharmacol; 2016 Mar; 89(3):388-98. PubMed ID: 26719580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free fatty acid receptors: structural models and elucidation of ligand binding interactions.
    Tikhonova IG; Poerio E
    BMC Struct Biol; 2015 Sep; 15():16. PubMed ID: 26346819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3.
    Hudson BD; Tikhonova IG; Pandey SK; Ulven T; Milligan G
    J Biol Chem; 2012 Nov; 287(49):41195-209. PubMed ID: 23066016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligands at the Free Fatty Acid Receptors 2/3 (GPR43/GPR41).
    Milligan G; Bolognini D; Sergeev E
    Handb Exp Pharmacol; 2017; 236():17-32. PubMed ID: 27757758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2.
    Lee T; Schwandner R; Swaminath G; Weiszmann J; Cardozo M; Greenberg J; Jaeckel P; Ge H; Wang Y; Jiao X; Liu J; Kayser F; Tian H; Li Y
    Mol Pharmacol; 2008 Dec; 74(6):1599-609. PubMed ID: 18818303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemogenetics defines a short-chain fatty acid receptor gut-brain axis.
    Barki N; Bolognini D; Börjesson U; Jenkins L; Riddell J; Hughes DI; Ulven T; Hudson BD; Ulven ER; Dekker N; Tobin AB; Milligan G
    Elife; 2022 Mar; 11():. PubMed ID: 35229717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free fatty acid receptor 3 is a key target of short chain fatty acid. What is the impact on the sympathetic nervous system?
    López Soto EJ; Gambino LO; Mustafá ER
    Channels (Austin); 2014; 8(3):169-71. PubMed ID: 24762451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of free fatty acid receptors in the regulation of energy metabolism.
    Hara T; Kashihara D; Ichimura A; Kimura I; Tsujimoto G; Hirasawa A
    Biochim Biophys Acta; 2014 Sep; 1841(9):1292-300. PubMed ID: 24923869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.