These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2306086)

  • 1. Aerobic and anaerobic growth of rifampin-resistant denitrifying bacteria in soil.
    Murray RE; Parsons LL; Smith MS
    Appl Environ Microbiol; 1990 Feb; 56(2):323-8. PubMed ID: 2306086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition between Two Isolates of Denitrifying Bacteria Added to Soil.
    Murray RE; Parsons LL; Smith MS
    Appl Environ Microbiol; 1992 Dec; 58(12):3890-5. PubMed ID: 16348820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of oxygen and N-oxide regulation of nitrite reductases in denitrifying bacteria.
    Ka JO; Urbance J; Ye RW; Ahn TY; Tiedje JM
    FEMS Microbiol Lett; 1997 Nov; 156(1):55-60. PubMed ID: 9368361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth yield of a denitrifying bacterium, Pseudomonas denitrificans, under aerobic and denitrifying conditions.
    Koike I; Hattori A
    J Gen Microbiol; 1975 May; 88(1):1-10. PubMed ID: 1151326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium.
    Rhee SK; Lee GM; Yoon JH; Park YH; Bae HS; Lee ST
    Appl Environ Microbiol; 1997 Jul; 63(7):2578-85. PubMed ID: 9212408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-probing for genes coding for denitrification, N2-fixation and nitrification in bacteria isolated from different soils.
    Kloos K; Hüsgen UM; Bothe H
    Z Naturforsch C J Biosci; 1998; 53(1-2):69-81. PubMed ID: 9528124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cultivation and enrichment of denitrifying phosphorus removal bacteria (DPB) in denitrifying biological nutrient removal process].
    Huang RX; Zhang J; Chen JY
    Huan Jing Ke Xue; 2010 May; 31(5):1252-6. PubMed ID: 20623860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of aerobic microorganisms upon virus survival in soil.
    Hurst CJ
    Can J Microbiol; 1988 May; 34(5):696-9. PubMed ID: 2850101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization and direct counting of individual denitrifying bacterial cells in soil by nirK-targeted direct in situ PCR.
    Ryuda N; Hashimoto T; Ueno D; Inoue K; Someya T
    Microbes Environ; 2011; 26(1):74-80. PubMed ID: 21487206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of herbicide quinclorac on microbic populations in a paddy soil].
    Lü Z; Min H; Ye Y
    Ying Yong Sheng Tai Xue Bao; 2004 Apr; 15(4):605-9. PubMed ID: 15334954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced biodegradation of methoxychlor in soil under sequential environmental conditions.
    Fogel S; Lancione RL; Sewall AE
    Appl Environ Microbiol; 1982 Jul; 44(1):113-20. PubMed ID: 7125645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of tn5 mutants to assess the role of the dissimilatory nitrite reductase in the competitive abilities of two pseudomonas strains in soil.
    Philippot L; Clays-Josserand A; Lensi R
    Appl Environ Microbiol; 1995 Apr; 61(4):1426-30. PubMed ID: 16534994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cultural and environmental factors affecting the longevity of Escherichia coli in Histosols.
    Tate RL
    Appl Environ Microbiol; 1978 May; 35(5):925-9. PubMed ID: 350158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of classical faecal bacterial markers and ampicillin-resistant bacteria in agricultural soils under Mediterranean climate after urban sludge amendment.
    Gondim-Porto C; Platero L; Nadal I; Navarro-García F
    Sci Total Environ; 2016 Sep; 565():200-210. PubMed ID: 27173838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of different fertilization regimes on abundance and community structure of the nirK-type denitrifying bacteria in greenhouse vegetable soils].
    Zeng XB; Wang YN; Wang YZ; Bai LY; Li LF; Duan R; Su SM; Wu CX
    Ying Yong Sheng Tai Xue Bao; 2014 Feb; 25(2):505-14. PubMed ID: 24830252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of di (2-ethylhexyl) phthalate and its impact on soil bacterial community under aerobic and anaerobic conditions.
    Zhu F; Zhu C; Zhou D; Gao J
    Chemosphere; 2019 Feb; 216():84-93. PubMed ID: 30359920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of trichloroethylene, tetrachloroethylene and dichloromethane on soil biomass and microbial counts.
    Kanazawa S; Filip Z
    Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med; 1987 Apr; 184(1):24-33. PubMed ID: 3113093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of aerobic and anaerobic [3H]leucine incorporation assays for determining pollution-induced bacterial community tolerance in copper-polluted, irrigated soils.
    Aaen KN; Holm PE; Priemé A; Hung NN; Brandt KK
    Environ Toxicol Chem; 2011 Mar; 30(3):588-95. PubMed ID: 21298704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrate-dependent anaerobic carbon monoxide oxidation by aerobic CO-oxidizing bacteria.
    King GM
    FEMS Microbiol Ecol; 2006 Apr; 56(1):1-7. PubMed ID: 16542399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation and consumption of odorous compounds in feedlot soils under aerobic, fermentative, and anaerobic respiratory conditions.
    Miller DN
    J Anim Sci; 2001 Oct; 79(10):2503-12. PubMed ID: 11721828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.