BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23061375)

  • 41. Sub-wavelength temperature probing in near-field laser heating by particles.
    Tang X; Yue Y; Chen X; Wang X
    Opt Express; 2012 Jun; 20(13):14152-67. PubMed ID: 22714479
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Resonances in electromagnetic scattering by objects with negative absorption.
    Kerker M
    Appl Opt; 1979 Apr; 18(8):1180-9. PubMed ID: 20208905
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Analysis of electromagnetic absorption in biologic objects with industrial high-frequency heating of dielectric materials].
    Rudakov ML
    Med Tr Prom Ekol; 1999; (6):6-10. PubMed ID: 10420709
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three-dimensional numerical analysis of convection and conduction cooling of spherical biocrystals with localized heating from synchrotron X-ray beams.
    Mhaisekar A; Kazmierczak MJ; Banerjee R
    J Synchrotron Radiat; 2005 May; 12(Pt 3):318-28. PubMed ID: 15840917
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analytical study of optical bistability in silicon-waveguide resonators.
    Rukhlenko ID; Premaratne M; Agrawal GP
    Opt Express; 2009 Nov; 17(24):22124-37. PubMed ID: 19997459
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy.
    Mølhave K; Wacaser BA; Petersen DH; Wagner JB; Samuelson L; Bøggild P
    Small; 2008 Oct; 4(10):1741-6. PubMed ID: 18819133
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.
    Pustovalov V; Astafyeva L; Jean B
    Nanotechnology; 2009 Jun; 20(22):225105. PubMed ID: 19433875
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film.
    Poutrina E; Ciracì C; Gauthier DJ; Smith DR
    Opt Express; 2012 May; 20(10):11005-13. PubMed ID: 22565723
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optical cell with periodic resistive heating for the measurement of heat, mass, and thermal diffusions in liquid mixtures.
    Hartung M; Köhler W
    Rev Sci Instrum; 2007 Aug; 78(8):084901. PubMed ID: 17764346
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanowire-on-Nanowire: All-Nanowire Electronics by On-Demand Selective Integration of Hierarchical Heterogeneous Nanowires.
    Lee H; Manorotkul W; Lee J; Kwon J; Suh YD; Paeng D; Grigoropoulos CP; Han S; Hong S; Yeo J; Ko SH
    ACS Nano; 2017 Dec; 11(12):12311-12317. PubMed ID: 29077403
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantifying Joule Heating and Mass Transport in Metal Nanowires During Controlled Electromigration.
    Yagi M; Shirakashi JI
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669491
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Diameter and polarization-dependent Raman scattering intensities of semiconductor nanowires.
    Lopez FJ; Hyun JK; Givan U; Kim IS; Holsteen AL; Lauhon LJ
    Nano Lett; 2012 May; 12(5):2266-71. PubMed ID: 22497202
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In situ nanojoining of Y- and T-shaped silver nanowires structures using femtosecond laser radiation.
    Lin L; Liu L; Peng P; Zou G; Duley WW; Zhou YN
    Nanotechnology; 2016 Mar; 27(12):125201. PubMed ID: 26891481
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Study of light-absorbing crystal birefringence and electrical modulation mechanisms for coupled thermal-optical effects.
    Zhou J; He Z; Ma Y; Dong S
    Appl Opt; 2014 Sep; 53(27):6243-55. PubMed ID: 25322104
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating.
    Rickey KM; Nian Q; Zhang G; Chen L; Suslov S; Bhat SV; Wu Y; Cheng GJ; Ruan X
    Sci Rep; 2015 Nov; 5():16052. PubMed ID: 26527570
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoscale probing of thermal, stress, and optical fields under near-field laser heating.
    Tang X; Xu S; Wang X
    PLoS One; 2013; 8(3):e58030. PubMed ID: 23555566
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antenna resonances in low aspect ratio semiconductor nanowires.
    Traviss DJ; Schmidt MK; Aizpurua J; Muskens OL
    Opt Express; 2015 Aug; 23(17):22771-87. PubMed ID: 26368246
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electromagnetic energy within coated cylinders at oblique incidence and applications to graphene coatings.
    Arruda TJ; Martinez AS; Pinheiro FA
    J Opt Soc Am A Opt Image Sci Vis; 2014 Aug; 31(8):1811-9. PubMed ID: 25121538
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance.
    Zolotavin P; Alabastri A; Nordlander P; Natelson D
    ACS Nano; 2016 Jul; 10(7):6972-9. PubMed ID: 27355238
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Large photonic strength of highly tunable resonant nanowire materials.
    Muskens OL; Diedenhofen SL; Kaas BC; Algra RE; Bakkers EP; Rivas JG; Lagendijk A
    Nano Lett; 2009 Mar; 9(3):930-4. PubMed ID: 19193115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.