These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23061375)

  • 61. The effect of sample holder geometry on electromagnetic heating of nanoparticle and NaCl solutions at 13.56 MHz.
    Li D; Jung YS; Kim HK; Chen J; Geller DA; Shuba MV; Maksimenko SA; Patch S; Forati E; Hanson GW
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3468-74. PubMed ID: 22997262
    [TBL] [Abstract][Full Text] [Related]  

  • 62. On demand shape-selective integration of individual vertical germanium nanowires on a Si(111) substrate via laser-localized heating.
    Ryu SG; Kim E; Yoo JH; Hwang DJ; Xiang B; Dubon OD; Minor AM; Grigoropoulos CP
    ACS Nano; 2013 Mar; 7(3):2090-8. PubMed ID: 23414075
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Near-Field Radiative Nanothermal Imaging of Nonuniform Joule Heating in Narrow Metal Wires.
    Weng Q; Lin KT; Yoshida K; Nema H; Komiyama S; Kim S; Hirakawa K; Kajihara Y
    Nano Lett; 2018 Jul; 18(7):4220-4225. PubMed ID: 29879352
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Heat conduction in nanoscale materials: a statistical-mechanics derivation of the local heat flux.
    Li X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032112. PubMed ID: 25314400
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Temperature-dependent electron mobility in InAs nanowires.
    Gupta N; Song Y; Holloway GW; Sinha U; Haapamaki CM; Lapierre RR; Baugh J
    Nanotechnology; 2013 Jun; 24(22):225202. PubMed ID: 23633474
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Visualising discrete structural transformations in germanium nanowires during ion beam irradiation and subsequent annealing.
    Kelly RA; Holmes JD; Petkov N
    Nanoscale; 2014 Nov; 6(21):12890-7. PubMed ID: 25231220
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A temperature microsensor for measuring laser-induced heating in gold nanorods.
    Pacardo DB; Neupane B; Wang G; Gu Z; Walker GM; Ligler FS
    Anal Bioanal Chem; 2015 Jan; 407(3):719-25. PubMed ID: 25303932
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires.
    Guo P; Zhuang X; Xu J; Zhang Q; Hu W; Zhu X; Wang X; Wan Q; He P; Zhou H; Pan A
    Nano Lett; 2013 Mar; 13(3):1251-6. PubMed ID: 23421772
    [TBL] [Abstract][Full Text] [Related]  

  • 69. FDTD modeling of solar energy absorption in silicon branched nanowires.
    Lundgren C; Lopez R; Redwing J; Melde K
    Opt Express; 2013 May; 21 Suppl 3():A392-400. PubMed ID: 24104426
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Lattice thermal conductivity crossovers in semiconductor nanowires.
    Mingo N; Broido DA
    Phys Rev Lett; 2004 Dec; 93(24):246106. PubMed ID: 15697834
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Impedance Model of Cylindrical Nanowires for Metamaterial Applications.
    Alam M; Mahmood A; Azam S; Butt MS; Haq AU; Massoud Y
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31374968
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Photothermal Imaging of Individual Nano-Objects with Large Scattering Cross Sections.
    Shi Z; Tian X; Luo Z; Huang R; Wu L; Li Q
    J Phys Chem A; 2020 Feb; 124(8):1659-1665. PubMed ID: 31994889
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy.
    Frederiksen R; Tutuncuoglu G; Matteini F; Martinez KL; Fontcuberta I Morral A; Alarcon-Llado E
    ACS Photonics; 2017 Sep; 4(9):2235-2241. PubMed ID: 28966933
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Giant photothermal nonlinearity in a single silicon nanostructure.
    Duh YS; Nagasaki Y; Tang YL; Wu PH; Cheng HY; Yen TH; Ding HX; Nishida K; Hotta I; Yang JH; Lo YP; Chen KP; Fujita K; Chang CW; Lin KH; Takahara J; Chu SW
    Nat Commun; 2020 Aug; 11(1):4101. PubMed ID: 32796839
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nanowire antenna absorption probed with time-reversed fourier microscopy.
    Grzela G; Paniagua-Domínguez R; Barten T; van Dam D; Sánchez-Gil JA; Rivas JG
    Nano Lett; 2014 Jun; 14(6):3227-34. PubMed ID: 24810791
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nano-welding and junction formation in hydrogen titanate nanowires by low-energy nitrogen ion irradiation.
    Dhal S; Chatterjee S; Sarkar S; Tribedi LC; Bapat R; Ayyub P
    Nanotechnology; 2015 Jun; 26(23):235601. PubMed ID: 25990259
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Photothermal images of live cells in presence of drug.
    Lapotko D; Romanovskaya T; Zharov V
    J Biomed Opt; 2002 Jul; 7(3):425-34. PubMed ID: 12175293
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Understanding the plasmon-enhanced photothermal effect of a polarized laser on metal nanowires.
    Wan H; Yu S; Lei Y; Zhao Q; Tao G; Luan S; Gui C; Zhou S
    Appl Opt; 2021 Apr; 60(10):2783-2787. PubMed ID: 33798152
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Heating effects in tip-enhanced optical microscopy.
    Downes A; Salter D; Elfick A
    Opt Express; 2006 Jun; 14(12):5216-22. PubMed ID: 19516687
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Spatiotemporal Imaging of the Acoustic Field Emitted by a Single Copper Nanowire.
    Jean C; Belliard L; Cornelius TW; Thomas O; Pennec Y; Cassinelli M; Toimil-Molares ME; Perrin B
    Nano Lett; 2016 Oct; 16(10):6592-6598. PubMed ID: 27657670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.