BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 23061442)

  • 1. Control and design of mutual orthogonality in bioorthogonal cycloadditions.
    Liang Y; Mackey JL; Lopez SA; Liu F; Houk KN
    J Am Chem Soc; 2012 Oct; 134(43):17904-7. PubMed ID: 23061442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclooctyne-based reagents for uncatalyzed click chemistry: A computational survey.
    Chenoweth K; Chenoweth D; Goddard WA
    Org Biomol Chem; 2009 Dec; 7(24):5255-8. PubMed ID: 20024122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in the Synthesis of Bioorthogonal Reagents: s-Tetrazines, 1,2,4-Triazines, Cyclooctynes, Heterocycloheptynes, and trans-Cyclooctenes.
    Fang Y; Hillman AS; Fox JM
    Top Curr Chem (Cham); 2024 May; 382(2):15. PubMed ID: 38703255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-Specific Glycoconjugation of Protein via Bioorthogonal Tetrazine Cycloaddition with a Genetically Encoded trans-Cyclooctene or Bicyclononyne.
    Machida T; Lang K; Xue L; Chin JW; Winssinger N
    Bioconjug Chem; 2015 May; 26(5):802-6. PubMed ID: 25897481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable, Reactive, and Orthogonal Tetrazines: Dispersion Forces Promote the Cycloaddition with Isonitriles.
    Tu J; Svatunek D; Parvez S; Liu AC; Levandowski BJ; Eckvahl HJ; Peterson RT; Houk KN; Franzini RM
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9043-9048. PubMed ID: 31062496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications.
    Handula M; Chen KT; Seimbille Y
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioorthogonal Cycloadditions: Computational Analysis with the Distortion/Interaction Model and Predictions of Reactivities.
    Liu F; Liang Y; Houk KN
    Acc Chem Res; 2017 Sep; 50(9):2297-2308. PubMed ID: 28876890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a (11)C-labeled tetrazine for rapid tetrazine-trans-cyclooctene ligation.
    Herth MM; Andersen VL; Lehel S; Madsen J; Knudsen GM; Kristensen JL
    Chem Commun (Camb); 2013 May; 49(36):3805-7. PubMed ID: 23535705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study.
    Schoenebeck F; Ess DH; Jones GO; Houk KN
    J Am Chem Soc; 2009 Jun; 131(23):8121-33. PubMed ID: 19459632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomedical applications of tetrazine cycloadditions.
    Devaraj NK; Weissleder R
    Acc Chem Res; 2011 Sep; 44(9):816-27. PubMed ID: 21627112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Readily Accessible Ambiphilic Cyclopentadienes for Bioorthogonal Labeling.
    Levandowski BJ; Gamache RF; Murphy JM; Houk KN
    J Am Chem Soc; 2018 May; 140(20):6426-6431. PubMed ID: 29712423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cycloadditions of Trans-Cyclooctenes and Nitrones as Tools for Bioorthogonal Labelling.
    Margison KD; Bilodeau DA; Mahmoudi F; Pezacki JP
    Chembiochem; 2020 Apr; 21(7):948-951. PubMed ID: 31617669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bone-Seeking trans-Cyclooctene for Pretargeting and Bioorthogonal Chemistry: A Proof of Concept Study Using
    Yazdani A; Bilton H; Vito A; Genady AR; Rathmann SM; Ahmad Z; Janzen N; Czorny S; Zeglis BM; Francesconi LC; Valliant JF
    J Med Chem; 2016 Oct; 59(20):9381-9389. PubMed ID: 27676258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorogenic Strain-Promoted Alkyne-Diazo Cycloadditions.
    Friscourt F; Fahrni CJ; Boons GJ
    Chemistry; 2015 Sep; 21(40):13996-4001. PubMed ID: 26330090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions.
    Lang K; Davis L; Wallace S; Mahesh M; Cox DJ; Blackman ML; Fox JM; Chin JW
    J Am Chem Soc; 2012 Jun; 134(25):10317-20. PubMed ID: 22694658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of polymeric micelles by strain-promoted alkyne-azide cycloadditions.
    Guo J; Chen G; Ning X; Wolfert MA; Li X; Xu B; Boons GJ
    Chemistry; 2010 Dec; 16(45):13360-6. PubMed ID: 21077066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific one-pot dual labeling of DNA by orthogonal cycloaddition chemistry.
    Schoch J; Staudt M; Samanta A; Wiessler M; Jäschke A
    Bioconjug Chem; 2012 Jul; 23(7):1382-6. PubMed ID: 22709568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems.
    Agard NJ; Prescher JA; Bertozzi CR
    J Am Chem Soc; 2004 Nov; 126(46):15046-7. PubMed ID: 15547999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of the scope and regioselectivity of the ruthenium-catalyzed [3 + 2]-cycloaddition of azides with internal alkynes.
    Majireck MM; Weinreb SM
    J Org Chem; 2006 Oct; 71(22):8680-3. PubMed ID: 17064059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ring closure to beta-turn mimics via copper-catalyzed azide/alkyne cycloadditions.
    Angell Y; Burgess K
    J Org Chem; 2005 Nov; 70(23):9595-8. PubMed ID: 16268639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.