These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 23061696)
1. Miniaturized electroosmotic pump capable of generating pressures of more than 1200 bar. Gu C; Jia Z; Zhu Z; He C; Wang W; Morgan A; Lu JJ; Liu S Anal Chem; 2012 Nov; 84(21):9609-14. PubMed ID: 23061696 [TBL] [Abstract][Full Text] [Related]
2. Stacking open-capillary electroosmotic pumps in series to boost the pumping pressure to drive high-performance liquid chromatographic separations. He C; Zhu Z; Gu C; Lu J; Liu S J Chromatogr A; 2012 Mar; 1227():253-8. PubMed ID: 22281507 [TBL] [Abstract][Full Text] [Related]
3. Incorporating high-pressure electroosmotic pump and a nano-flow gradient generator into a miniaturized liquid chromatographic system for peptide analysis. Chen A; Lynch KB; Wang X; Lu JJ; Gu C; Liu S Anal Chim Acta; 2014 Sep; 844():90-8. PubMed ID: 25172821 [TBL] [Abstract][Full Text] [Related]
4. High-pressure open-channel on-chip electroosmotic pump for nanoflow high performance liquid chromatography. Wang W; Gu C; Lynch KB; Lu JJ; Zhang Z; Pu Q; Liu S Anal Chem; 2014 Feb; 86(4):1958-64. PubMed ID: 24495233 [TBL] [Abstract][Full Text] [Related]
5. Binary electroosmotic-pump nanoflow gradient generator for miniaturized high-performance liquid chromatography. Zhou L; Lu JJ; Gu C; Liu S Anal Chem; 2014 Dec; 86(24):12214-9. PubMed ID: 25401302 [TBL] [Abstract][Full Text] [Related]
6. An integrated micropump and electrospray emitter system based on porous silica monoliths. Wang P; Chen Z; Chang HC Electrophoresis; 2006 Oct; 27(20):3964-70. PubMed ID: 16983638 [TBL] [Abstract][Full Text] [Related]
7. Thermal expansion pump for capillary high-performance liquid chromatography. Tao Q; Wu Q; Zhang X Anal Chem; 2010 Feb; 82(3):842-7. PubMed ID: 20050677 [TBL] [Abstract][Full Text] [Related]
8. Flow batteries for microfluidic networks: configuring an electroosmotic pump for nonterminal positions. He C; Lu JJ; Jia Z; Wang W; Wang X; Dasgupta PK; Liu S Anal Chem; 2011 Apr; 83(7):2430-3. PubMed ID: 21375230 [TBL] [Abstract][Full Text] [Related]
9. Study of the electroosmotic flow as a means to propel the mobile phase in capillary electrochromatography in view of further miniaturization of capillary electrochromatography systems. Szekely L; Freitag R Electrophoresis; 2005 May; 26(10):1928-39. PubMed ID: 15832304 [TBL] [Abstract][Full Text] [Related]
10. A column capacity study of single, serial, and parallel linked rod monolithic high performance liquid chromatography columns. Gray MJ; Slonecker PJ; Dennis G; Shalliker RA J Chromatogr A; 2005 Nov; 1096(1-2):92-100. PubMed ID: 16301072 [TBL] [Abstract][Full Text] [Related]
11. Advancement of electroosmotic pump in microflow analysis: A review. Li L; Wang X; Pu Q; Liu S Anal Chim Acta; 2019 Jul; 1060():1-16. PubMed ID: 30902323 [TBL] [Abstract][Full Text] [Related]
16. A fritless, EOF microchip pump for high pressure pumping of aqueous and organic solvents. Lu Q; Collins GE Lab Chip; 2009 Apr; 9(7):954-60. PubMed ID: 19294307 [TBL] [Abstract][Full Text] [Related]
17. Quaternary ammonium substituted agarose as surface coating for capillary electrophoresis. Ullsten S; Söderberg L; Folestad S; Markides KE Analyst; 2004 May; 129(5):410-5. PubMed ID: 15116232 [TBL] [Abstract][Full Text] [Related]
18. A multiple disk centrifugal pump as a blood flow device. Miller GE; Etter BD; Dorsi JM IEEE Trans Biomed Eng; 1990 Feb; 37(2):157-63. PubMed ID: 2312140 [TBL] [Abstract][Full Text] [Related]
19. A microfluidic device for performing pressure-driven separations. Dutta D; Ramsey JM Lab Chip; 2011 Sep; 11(18):3081-8. PubMed ID: 21789335 [TBL] [Abstract][Full Text] [Related]
20. Polymer monoliths with low hydrophobicity for strong cation-exchange capillary liquid chromatography of peptides and proteins. Gu B; Li Y; Lee ML Anal Chem; 2007 Aug; 79(15):5848-55. PubMed ID: 17583965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]