BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23061854)

  • 1. Effect of pressure on the ionic conductivity of Li+ and Cl- ions in water.
    Varanasi SR; Kumar P; Subramanian Y
    J Chem Phys; 2012 Oct; 137(14):144506. PubMed ID: 23061854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation between the diffusivity, viscosity, and ionic radius of LiCl in water, methanol, and ethylene glycol: a molecular dynamics simulation.
    Kumar P; Varanasi SR; Yashonath S
    J Phys Chem B; 2013 Jul; 117(27):8196-208. PubMed ID: 23800019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence in support of levitation effect as the reason for size dependence of ionic conductivity in water: a molecular dynamics simulation.
    Ghorai PK; Yashonath S
    J Phys Chem B; 2006 Jun; 110(24):12179-90. PubMed ID: 16800534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ions in water: role of attractive interactions in size dependent diffusivity maximum.
    Borah BJ; Yashonath S
    J Chem Phys; 2010 Sep; 133(11):114504. PubMed ID: 20866142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular dynamics study and molecular level explanation of pressure dependence of ionic conductivity of potassium chloride in water.
    Varanasi SR; Kumar P; Masia M; Demontis P; Suffritti GB; Yashonath S
    Phys Chem Chem Phys; 2011 Jun; 13(23):10877-84. PubMed ID: 21589981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Levitation effect: Distinguishing anomalous from linear regime of guests sorbed in zeolites through the decay of intermediate scattering function and wavevector dependence of self-diffusivity.
    Ghorai PK; Yashonath S
    J Phys Chem B; 2005 Mar; 109(9):3979-83. PubMed ID: 16851453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and dynamics of the chromate ion in aqueous solution. An ab initio QMCF-MD simulation.
    Hinteregger E; Pribil AB; Hofer TS; Randolf BR; Weiss AK; Rode BM
    Inorg Chem; 2010 Sep; 49(17):7964-8. PubMed ID: 20704361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes.
    Shao Q; Huang L; Zhou J; Lu L; Zhang L; Lu X; Jiang S; Gubbins KE; Shen W
    Phys Chem Chem Phys; 2008 Apr; 10(14):1896-906. PubMed ID: 18368182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Stokes-Einstein relationship and the levitation effect: size-dependent diffusion maximum in dense fluids and close-packed disordered solids.
    Ghorai PK; Yashonath S
    J Phys Chem B; 2005 Mar; 109(12):5824-35. PubMed ID: 16851635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydration of Li+ -ion in atom-bond electronegativity equalization method-7P water: a molecular dynamics simulation study.
    Li X; Yang ZZ
    J Chem Phys; 2005 Feb; 122(8):84514. PubMed ID: 15836070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent maximum in ion conductivity: the levitation effect provides an alternative explanation.
    Ghorai PK; Yashonath S; Lynden-Bell RM
    J Phys Chem B; 2005 Apr; 109(16):8120-4. PubMed ID: 16851949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tl(I)-the strongest structure-breaking metal ion in water? A quantum mechanical/molecular mechanical simulation study.
    Vchirawongkwin V; Hofer TS; Randolf BR; Rode BM
    J Comput Chem; 2007 Apr; 28(6):1006-16. PubMed ID: 17269122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration of alkali ions from first principles molecular dynamics revisited.
    Ikeda T; Boero M; Terakura K
    J Chem Phys; 2007 Jan; 126(3):034501. PubMed ID: 17249878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of temperature, pressure, and cosolvents on structural and dynamic properties of the hydration shell of SNase: a molecular dynamics computer simulation study.
    Smolin N; Winter R
    J Phys Chem B; 2008 Jan; 112(3):997-1006. PubMed ID: 18171045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and dynamics of the CrIII ion in aqueous solution: Ab initio QM/MM molecular dynamics simulation.
    Kritayakornupong C; Plankensteiner K; Rode BM
    J Comput Chem; 2004 Oct; 25(13):1576-83. PubMed ID: 15264252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and dynamic properties of concentrated alkali halide solutions: a molecular dynamics simulation study.
    Du H; Rasaiah JC; Miller JD
    J Phys Chem B; 2007 Jan; 111(1):209-17. PubMed ID: 17201445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion mobilities and microscopic dynamics in liquid (Li,K)Cl.
    Morgan B; Madden PA
    J Chem Phys; 2004 Jan; 120(3):1402-13. PubMed ID: 15268266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and transport properties of the LiPF6 doped 1-ethyl-2,3-dimethyl-imidazolium hexafluorophosphate ionic liquids: a molecular dynamics study.
    Niu S; Cao Z; Li S; Yan T
    J Phys Chem B; 2010 Jan; 114(2):877-81. PubMed ID: 19928826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of diffusivity on density and solute diameter in liquid phase: a molecular dynamics study of Lennard-Jones system.
    Varanasi SR; Kumar P; Yashonath S
    J Chem Phys; 2012 Apr; 136(14):144505. PubMed ID: 22502531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water.
    Reif MM; Hünenberger PH
    J Chem Phys; 2011 Apr; 134(14):144104. PubMed ID: 21495739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.