These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 2306210)
21. On the thyroid hormone-induced increase in respiratory capacity of isolated rat hepatocytes. Gregory RB; Berry MN Biochim Biophys Acta; 1991 Dec; 1098(1):61-7. PubMed ID: 1751550 [TBL] [Abstract][Full Text] [Related]
22. The apparent non-linearity of the relationship between the rate of respiration and the protonmotive force of mitochondria can be explained by heterogeneity of mitochondrial preparations. Duszyński J; Wojtczak L FEBS Lett; 1985 Mar; 182(2):243-8. PubMed ID: 2984042 [TBL] [Abstract][Full Text] [Related]
23. The efficiency of oxidative phosphorylation and the rapid control by thyroid hormone of nicotinamide nucleotide reduction and transhydrogenation in intact rat liver mitochondria. Corrigall J; Tselentis BS; Mowbray J Eur J Biochem; 1984 Jun; 141(2):435-40. PubMed ID: 6734604 [TBL] [Abstract][Full Text] [Related]
24. Effects of ATP on various steps controlling the rate of oxidative phosphorylation in newborn rat liver mitochondria. Baggetto L; Gautheron DC; Godinot C Arch Biochem Biophys; 1984 Aug; 232(2):670-8. PubMed ID: 6087735 [TBL] [Abstract][Full Text] [Related]
25. Control of oxidative phosphorylation in rat liver mitochondria: effect of ionic media. Devin A; Guérin B; Rigoulet M Biochim Biophys Acta; 1997 Apr; 1319(2-3):293-300. PubMed ID: 9131050 [TBL] [Abstract][Full Text] [Related]
26. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after chronic ethanol feeding. Marcinkeviciute A; Mildaziene V; Crumm S; Demin O; Hoek JB; Kholodenko B Biochem J; 2000 Jul; 349(Pt 2):519-26. PubMed ID: 10880351 [TBL] [Abstract][Full Text] [Related]
27. Thyroid hormone action at the cell level (second of two parts). Sterling K N Engl J Med; 1979 Jan; 300(4):173-7. PubMed ID: 215907 [No Abstract] [Full Text] [Related]
28. Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes. Brand MD; Harper ME; Taylor HC Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):739-48. PubMed ID: 8489502 [TBL] [Abstract][Full Text] [Related]
30. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. Hafner RP; Brown GC; Brand MD Eur J Biochem; 1990 Mar; 188(2):313-9. PubMed ID: 2156698 [TBL] [Abstract][Full Text] [Related]
31. Temperature dependence of the coupling efficiency of rat liver oxidative phosphorylation: role of adenine nucleotide translocator. Quentin E; Avéret N; Guérin B; Rigoulet M Biochem Biophys Res Commun; 1994 Jul; 202(2):816-21. PubMed ID: 8048953 [TBL] [Abstract][Full Text] [Related]
32. Decrease in mitochondrial energy coupling by thyroid hormones: a physiological effect rather than a pathological hyperthyroidism consequence. Bobyleva V; Pazienza TL; Maseroli R; Tomasi A; Salvioli S; Cossarizza A; Franceschi C; Skulachev VP FEBS Lett; 1998 Jul; 430(3):409-13. PubMed ID: 9688582 [TBL] [Abstract][Full Text] [Related]
33. Effect of thyroid state on enzymatic and non-enzymatic processes in H2O2 removal by liver mitochondria of male rats. Venditti P; Napolitano G; Barone D; Coppola I; Di Meo S Mol Cell Endocrinol; 2015 Mar; 403():57-63. PubMed ID: 25597632 [TBL] [Abstract][Full Text] [Related]
34. Rapid thyroid-hormone effect on mitochondrial and cytosolic ATP/ADP ratios in the intact liver cell. Seitz HJ; Müller MJ; Soboll S Biochem J; 1985 Apr; 227(1):149-53. PubMed ID: 3994679 [TBL] [Abstract][Full Text] [Related]
35. The relationship between the rate of respiration and the protonmotive force. The role of proton conductivity. O'Shea PS; Chappell JB Biochem J; 1984 Apr; 219(2):401-4. PubMed ID: 6331387 [TBL] [Abstract][Full Text] [Related]
37. The influence of nanomolar calcium ions and physiological levels of thyroid hormone on oxidative phosphorylation in rat liver mitochondria. A possible signal amplification control mechanism. Thomas WE; Crespo-Armas A; Mowbray J Biochem J; 1987 Oct; 247(2):315-20. PubMed ID: 3426539 [TBL] [Abstract][Full Text] [Related]
38. Short-term control of mitochondrial adenine nucleotide translocator by thyroid hormone. Mowbray J; Corrigall J Eur J Biochem; 1984 Feb; 139(1):95-9. PubMed ID: 6698010 [TBL] [Abstract][Full Text] [Related]
39. Glycerol-3-phosphate dehydrogenase expression and oxygen consumption in liver mitochondria of female and male rats with chronic alteration of thyroid status. Rauchová H; Mrácek T; Novák P; Vokurková M; Soukup T Horm Metab Res; 2011 Jan; 43(1):43-7. PubMed ID: 20886417 [TBL] [Abstract][Full Text] [Related]
40. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects. Ventura FV; Ruiter J; Ijlst L; de Almeida IT; Wanders RJ Mol Genet Metab; 2005 Nov; 86(3):344-52. PubMed ID: 16176879 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]