These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 23062107)

  • 21. Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly(3-hexylthiophene): fullerene derivative solar cells.
    Shao S; Liu J; Zhang J; Zhang B; Xie Z; Geng Y; Wang L
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5704-10. PubMed ID: 23027773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence of harvesting electricity by exciton recombination in an n-n type solar cell.
    Song QL; Yang HB; Gan Y; Gong C; Ming Li C
    J Am Chem Soc; 2010 Apr; 132(13):4554-5. PubMed ID: 20222747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excitonic properties of graphene-based materials.
    Wang M; Li CM
    Nanoscale; 2012 Feb; 4(4):1044-50. PubMed ID: 21960114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective modulation of charge-carrier transport of a photoanode in a photoelectrochemical cell by a graphitized fullerene interfacial layer.
    Park SY; Lim DC; Hong EM; Lee JY; Heo J; Lim JH; Lee CL; Kim YD; Mul G
    ChemSusChem; 2015 Jan; 8(1):172-6. PubMed ID: 25410298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fullerene-bisadduct acceptors for polymer solar cells.
    Li Y
    Chem Asian J; 2013 Oct; 8(10):2316-28. PubMed ID: 23853151
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A material combination principle for highly efficient polymer solar cells investigated by mesoscopic phase heterogeneity.
    Yan H; Li D; He C; Wei Z; Yang Y; Li Y
    Nanoscale; 2013 Dec; 5(23):11649-56. PubMed ID: 24096725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanofibrillar self-organization of regioregular poly(3-hexylthiophene) and [6,6]-phenyl C(61)-butyric acid methyl ester by dip-coating: a simple method to obtain efficient bulk heterojunction solar cells.
    Valentini L; Bagnis D; Kenny JM
    Nanotechnology; 2009 Mar; 20(9):095603. PubMed ID: 19417494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells.
    Ye Y; Gan L; Dai L; Dai Y; Guo X; Meng H; Yu B; Shi Z; Shang K; Qin G
    Nanoscale; 2011 Apr; 3(4):1477-81. PubMed ID: 21359405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase separation in bulk heterojunctions of semiconducting polymers and fullerenes for photovoltaics.
    Treat ND; Chabinyc ML
    Annu Rev Phys Chem; 2014; 65():59-81. PubMed ID: 24689796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap.
    Qi JS; Huang JY; Feng J; Shi da N; Li J
    ACS Nano; 2011 May; 5(5):3475-82. PubMed ID: 21456598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coating on a cold substrate largely enhances power conversion efficiency of the bulk heterojunction solar cell.
    Oh JY; Lee TI; Myoung JM; Jeong U; Baik HK
    Macromol Rapid Commun; 2011 Jul; 32(14):1066-71. PubMed ID: 21542045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembly of thiophene- and furan-appended methanofullerenes with poly(3-hexylthiophene) in organic solar cells.
    Troshin PA; Khakina EA; Egginger M; Goryachev AE; Troyanov SI; Fuchsbauer A; Peregudov AS; Lyubovskaya RN; Razumov VF; Sariciftci NS
    ChemSusChem; 2010 Mar; 3(3):356-66. PubMed ID: 20077464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of alkoxy chain length in alkoxy-substituted dihydronaphthyl-based [60]fullerene bisadduct acceptors on their photovoltaic properties.
    Meng X; Xu Q; Zhang W; Tan Z; Li Y; Zhang Z; Jiang L; Shu C; Wang C
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5966-73. PubMed ID: 23131100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.
    Ye Y; Dai Y; Dai L; Shi Z; Liu N; Wang F; Fu L; Peng R; Wen X; Chen Z; Liu Z; Qin G
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3406-10. PubMed ID: 21058686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fullerenes, carbon nanotubes, and graphene for molecular electronics.
    Pinzón JR; Villalta-Cerdas A; Echegoyen L
    Top Curr Chem; 2012; 312():127-74. PubMed ID: 21894583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of the electron mobility in polymer solar cells with different fullerene acceptors.
    Gao D; Djukic B; Shi W; Bridges CR; Kozycz LM; Seferos DS
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8038-43. PubMed ID: 23845022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.
    Li Y
    Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile synthesis of fluorine-substituted benzothiadiazole-based organic semiconductors and their use in solution-processed small-molecule organic solar cells.
    Cho N; Song K; Lee JK; Ko J
    Chemistry; 2012 Sep; 18(36):11433-9. PubMed ID: 22829549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-property relationships of small bandgap conjugated polymers for solar cells.
    Hellström S; Zhang F; Inganäs O; Andersson MR
    Dalton Trans; 2009 Dec; (45):10032-9. PubMed ID: 19904430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.