BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23062244)

  • 1. In silico assessment of adverse effects of a large set of 6-fluoroquinolones obtained from a study of tuberculosis chemotherapy.
    Tusar M; Minovski N; Fjodorova N; Novic M
    Curr Drug Saf; 2012 Sep; 7(4):313-20. PubMed ID: 23062244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial design and virtual screening of potent anti-tubercular fluoroquinolone and isothiazoloquinolone compounds utilizing QSAR and pharmacophore modelling.
    Nandi S; Ahmed S; Saxena AK
    SAR QSAR Environ Res; 2018 Feb; 29(2):151-170. PubMed ID: 29347843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluoroquinolone derivatives and their anti-tubercular activities.
    Fan YL; Wu JB; Cheng XW; Zhang FZ; Feng LS
    Eur J Med Chem; 2018 Feb; 146():554-563. PubMed ID: 29407980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cluster-based molecular docking study for in silico identification of novel 6-fluoroquinolones as potential inhibitors against Mycobacterium tuberculosis.
    Minovski N; Perdih A; Novic M; Solmajer T
    J Comput Chem; 2013 Apr; 34(9):790-801. PubMed ID: 23280926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluoroquinolones, the cornerstone of treatment of drug-resistant tuberculosis: a pharmacokinetic and pharmacodynamic approach.
    Pranger AD; Alffenaar JW; Aarnoutse RE
    Curr Pharm Des; 2011; 17(27):2900-30. PubMed ID: 21834759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluoroquinolone resistance in non-multidrug-resistant tuberculosis-a surveillance study in New South Wales, Australia, and a review of global resistance rates.
    Ho J; Jelfs P; Sintchenko V
    Int J Infect Dis; 2014 Sep; 26():149-53. PubMed ID: 25086437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Molecular Genetics of Fluoroquinolone Resistance in Mycobacterium tuberculosis.
    Mayer C; Takiff H
    Microbiol Spectr; 2014 Aug; 2(4):MGM2-0009-2013. PubMed ID: 26104201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Prospects for development of new antituberculous drugs].
    Tomioka H
    Kekkaku; 2002 Aug; 77(8):573-84. PubMed ID: 12235850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluoroquinolone resistance in Mycobacterium tuberculosis isolates: associated genetic mutations and relationship to antimicrobial exposure.
    Wang JY; Lee LN; Lai HC; Wang SK; Jan IS; Yu CJ; Hsueh PR; Yang PC
    J Antimicrob Chemother; 2007 May; 59(5):860-5. PubMed ID: 17412727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of gyrA and gyrB mutations associated with fluoroquinolone resistance in Mycobacterium tuberculosis isolates from Morocco.
    Chaoui I; Oudghiri A; El Mzibri M
    J Glob Antimicrob Resist; 2018 Mar; 12():171-174. PubMed ID: 29033301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis, and biological evaluation of dihydroartemisinin-fluoroquinolone conjugates as a novel type of potential antitubercular agents.
    Zhou FW; Lei HS; Fan L; Jiang L; Liu J; Peng XM; Xu XR; Chen L; Zhou CH; Zou YY; Liu CP; He ZQ; Yang DC
    Bioorg Med Chem Lett; 2014 Apr; 24(8):1912-7. PubMed ID: 24684842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSAR based therapeutic management of M. tuberculosis.
    Ahamad S; Rahman S; Khan FI; Dwivedi N; Ali S; Kim J; Imtaiyaz Hassan M
    Arch Pharm Res; 2017 Jun; 40(6):676-694. PubMed ID: 28456911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR Studies, Synthesis and Antibacterial Assessment of New Inhibitors Against Multidrug-Resistant Mycobacterium tuberculosis.
    Kovalishyn V; Brovarets V; Blagodatnyi V; Kopernyk I; Hodyna D; Chumachenko S; Shablykin O; Kozachenko O; Vovk M; Barus M; Bratenko M; Metelytsia L
    Curr Drug Discov Technol; 2017; 14(1):25-38. PubMed ID: 27829331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorially-generated library of 6-fluoroquinolone analogs as potential novel antitubercular agents: a chemometric and molecular modeling assessment.
    Minovski N; Perdih A; Solmajer T
    J Mol Model; 2012 May; 18(5):1735-53. PubMed ID: 21833830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing efficacies of moxifloxacin, levofloxacin and gatifloxacin in tuberculosis granulomas using a multi-scale systems pharmacology approach.
    Pienaar E; Sarathy J; Prideaux B; Dietzold J; Dartois V; Kirschner DE; Linderman JJ
    PLoS Comput Biol; 2017 Aug; 13(8):e1005650. PubMed ID: 28817561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluoroquinolone resistance in Mycobacterium tuberculosis isolates from Pakistan 2010-2014: Implications for disease control.
    Jabeen K; Shakoor S; Malik F; Hasan R
    Int J Mycobacteriol; 2015 Mar; 4 Suppl 1():47-8. PubMed ID: 27128617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-activity relationships on purine and 2,3-dihydropurine derivatives as antitubercular agents: a data mining approach.
    Pietra D; Imbriani M; Borghini A; Giorgi I; Settimo FD; Breschi MC; Campa M; Batoni G; Brancatisano FL; Bianucci AM
    Chem Biol Drug Des; 2011 Oct; 78(4):718-24. PubMed ID: 21756283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.