These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 23062555)
1. p-Benzoquinone-mediated amperometric biosensor developed with Psychrobacter sp. for toxicity testing of heavy metals. Wang X; Liu M; Wang X; Wu Z; Yang L; Xia S; Chen L; Zhao J Biosens Bioelectron; 2013 Mar; 41():557-62. PubMed ID: 23062555 [TBL] [Abstract][Full Text] [Related]
2. Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters. Futra D; Heng LY; Surif S; Ahmad A; Ling TL Sensors (Basel); 2014 Dec; 14(12):23248-68. PubMed ID: 25490588 [TBL] [Abstract][Full Text] [Related]
3. A mediated glucose biosensor incorporated with reverse iontophoresis function for noninvasive glucose monitoring. Ching CT; Sun TP; Huang SH; Shieh HL; Chen CY Ann Biomed Eng; 2010 Apr; 38(4):1548-55. PubMed ID: 20087770 [TBL] [Abstract][Full Text] [Related]
4. Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor. Yu D; Bai L; Zhai J; Wang Y; Dong S Talanta; 2017 Jun; 168():210-216. PubMed ID: 28391844 [TBL] [Abstract][Full Text] [Related]
5. Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Bontidean I; Ahlqvist J; Mulchandani A; Chen W; Bae W; Mehra RK; Mortari A; Csöregi E Biosens Bioelectron; 2003 May; 18(5-6):547-53. PubMed ID: 12706561 [TBL] [Abstract][Full Text] [Related]
6. Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: Application of ultra-microelectrode to enhance sucrose biosensor's sensitivity. Bagal-Kestwal D; Karve MS; Kakade B; Pillai VK Biosens Bioelectron; 2008 Dec; 24(4):657-64. PubMed ID: 18667298 [TBL] [Abstract][Full Text] [Related]
7. Sensitive determination of L-lysine with a new amperometric microbial biosensor based on Saccharomyces cerevisiae yeast cells. Akyilmaz E; Erdoğan A; Oztürk R; Yaşa I Biosens Bioelectron; 2007 Jan; 22(6):1055-60. PubMed ID: 16759846 [TBL] [Abstract][Full Text] [Related]
8. [Acute toxicity analysis performance of CellSense biosensor with E. coli]. Wang XJ; Wang H; Zhao JF; Xia SQ; Zhao HN Huan Jing Ke Xue; 2009 Apr; 30(4):1210-4. PubMed ID: 19545031 [TBL] [Abstract][Full Text] [Related]
9. On-line monitoring of heavy metals-related toxicity with a microbial fuel cell biosensor. Adekunle A; Raghavan V; Tartakovsky B Biosens Bioelectron; 2019 May; 132():382-390. PubMed ID: 30903911 [TBL] [Abstract][Full Text] [Related]
10. An optical biosensor from green fluorescent Escherichia coli for the evaluation of single and combined heavy metal toxicities. Futra D; Heng LY; Ahmad A; Surif S; Ling TL Sensors (Basel); 2015 May; 15(6):12668-81. PubMed ID: 26029952 [TBL] [Abstract][Full Text] [Related]
11. Development of a disposable amperometric biosensor for salicylate based on a plastic electrochemical microcell. Carvalhal RF; Machado DS; Mendes RK; Almeida AL; Moreira NH; Piazetta MH; Gobbi AL; Kubota LT Biosens Bioelectron; 2010 Jun; 25(10):2200-4. PubMed ID: 20363611 [TBL] [Abstract][Full Text] [Related]
12. A rapid and sensitive p-benzoquinone-mediated bioassay for determination of heavy metal toxicity in water. Yu D; Zhai J; Yong D; Dong S Analyst; 2013 Jun; 138(11):3297-302. PubMed ID: 23612368 [TBL] [Abstract][Full Text] [Related]
13. Detection of heavy metal toxicity using cardiac cell-based biosensor. Liu Q; Cai H; Xu Y; Xiao L; Yang M; Wang P Biosens Bioelectron; 2007 Jun; 22(12):3224-9. PubMed ID: 17416514 [TBL] [Abstract][Full Text] [Related]
14. Amperometric catechol biosensor based on polyaniline-polyphenol oxidase. Tan Y; Guo X; Zhang J; Kan J Biosens Bioelectron; 2010 Mar; 25(7):1681-7. PubMed ID: 20060283 [TBL] [Abstract][Full Text] [Related]
15. A novel sensitive cell-based Love Wave biosensor for marine toxin detection. Zhang X; Fang J; Zou L; Zou Y; Lang L; Gao F; Hu N; Wang P Biosens Bioelectron; 2016 Mar; 77():573-9. PubMed ID: 26476015 [TBL] [Abstract][Full Text] [Related]
16. A living plant cell-based biosensor for real-time monitoring invisible damage of plant cells under heavy metal stress. Wang X; Cheng M; Yang Q; Wei H; Xia A; Wang L; Ben Y; Zhou Q; Yang Z; Huang X Sci Total Environ; 2019 Dec; 697():134097. PubMed ID: 31484090 [TBL] [Abstract][Full Text] [Related]
17. Thin-walled graphitic nanocages as a unique platform for amperometric glucose biosensor. Guo CX; Sheng ZM; Shen YQ; Dong ZL; Li CM ACS Appl Mater Interfaces; 2010 Sep; 2(9):2481-4. PubMed ID: 20722406 [TBL] [Abstract][Full Text] [Related]
18. Polypyrrole based amperometric and potentiometric phosphate biosensors: a comparative study B. Lawal AT; Adeloju SB Biosens Bioelectron; 2013 Feb; 40(1):377-84. PubMed ID: 23021852 [TBL] [Abstract][Full Text] [Related]
19. An amperometric β-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue-chitosan and gold nanoparticles-chitosan nanocomposite films. Wang B; Ji X; Zhao H; Wang N; Li X; Ni R; Liu Y Biosens Bioelectron; 2014 May; 55():113-9. PubMed ID: 24368228 [TBL] [Abstract][Full Text] [Related]
20. Application of a bacterial whole cell biosensor for the rapid detection of cytotoxicity in heavy metal contaminated seawater. Cui Z; Luan X; Jiang H; Li Q; Xu G; Sun C; Zheng L; Song Y; Davison PA; Huang WE Chemosphere; 2018 Jun; 200():322-329. PubMed ID: 29494913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]