These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 23062787)

  • 1. Operational factors affecting the bioregeneration of mono-amine modified silica loaded with Acid Orange 7.
    Al-Amrani WA; Lim PE; Seng CE; Ngah WS
    Water Res; 2012 Dec; 46(19):6419-29. PubMed ID: 23062787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioregeneration of mono-amine modified silica and granular activated carbon loaded with Acid Orange 7 in batch system.
    Al-Amrani WA; Lim PE; Seng CE; Ngah WS
    Bioresour Technol; 2012 Aug; 118():633-7. PubMed ID: 22704829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of co-substrate and biomass acclimation concentration on the bioregeneration of azo dye-loaded mono-amine modified silica.
    Al-Amrani WA; Lim PE; Seng CE; Wan Ngah WS
    Bioresour Technol; 2013 Sep; 143():584-91. PubMed ID: 23835263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and biodegradation of azo dye in biofilm processes.
    Li J; Bishop PL
    Water Sci Technol; 2004; 49(11-12):237-45. PubMed ID: 15303747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decolorization and partial degradation of monoazo dyes in sequential fixed-film anaerobic batch reactor (SFABR).
    Singh P; Sanghi R; Pandey A; Iyengar L
    Bioresour Technol; 2007 Jul; 98(10):2053-6. PubMed ID: 17035003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic treatment of azo dye Acid Orange 7 under fed-batch and continuous conditions.
    Méndez-Paz D; Omil F; Lema JM
    Water Res; 2005 Mar; 39(5):771-8. PubMed ID: 15743621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosorption and biodegradation of Acid Orange 7 by Enterococcus faecalis strain ZL: optimization by response surface methodological approach.
    Lim CK; Bay HH; Aris A; Abdul Majid Z; Ibrahim Z
    Environ Sci Pollut Res Int; 2013 Jul; 20(7):5056-66. PubMed ID: 23334551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced decolourisation of acid orange 7 in a continuous UASB reactor with quinones as redox mediators.
    Cervantes FJ; van der Zee FP; Lettinga G; Field JA
    Water Sci Technol; 2001; 44(4):123-8. PubMed ID: 11575075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wet air and catalytic wet air oxidation of several azodyes from wastewaters: the beneficial role of catalysis.
    Rodríguez A; García J; Ovejero G; Mestanza M
    Water Sci Technol; 2009; 60(8):1989-99. PubMed ID: 19844045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of operational factors on bioregeneration of binary phenol and 4-chlorophenol-loaded granular activated carbon using PVA-immobilized biomass cryogels.
    Leong KY; Adnan R; Lim PE; Ng SL; Seng CE
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):20959-20971. PubMed ID: 28726220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decolorization of orange II using an anaerobic sequencing batch reactor with and without co-substrates.
    Ong SA; Toorisaka E; Hirata M; Hano T
    J Environ Sci (China); 2012; 24(2):291-6. PubMed ID: 22655390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly efficient single chambered up-flow membrane-less microbial fuel cell for treatment of azo dye Acid Orange 7-containing wastewater.
    Thung WE; Ong SA; Ho LN; Wong YS; Ridwan F; Oon YL; Oon YS; Lehl HK
    Bioresour Technol; 2015 Dec; 197():284-8. PubMed ID: 26342340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of experimental design methodology to the decolorization of Orange II using low iron concentration of photoelectro-Fenton process.
    Zhang H; Li Y; Zhong X; Ran X
    Water Sci Technol; 2011; 63(7):1373-80. PubMed ID: 21508539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of gas-liquid gliding arc discharge on Acid Orange II.
    Yan JH; Liu YN; Bo Zh; Li XD; Cen KF
    J Hazard Mater; 2008 Sep; 157(2-3):441-7. PubMed ID: 18321644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic biodegradation of a sulfonated phenylazonaphthol dye by a bacterial community immobilized in a multistage packed-bed BAC reactor.
    Ruiz-Arias A; Juárez-Ramírez C; de los Cobos-Vasconcelos D; Ruiz-Ordaz N; Salmerón-Alcocer A; Ahuatzi-Chacón D; Galíndez-Mayer J
    Appl Biochem Biotechnol; 2010 Nov; 162(6):1689-707. PubMed ID: 20376575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological decolorization of xanthene dyes by anaerobic granular biomass.
    Apostol LC; Pereira L; Pereira R; Gavrilescu M; Alves MM
    Biodegradation; 2012 Sep; 23(5):725-37. PubMed ID: 22437968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic degradation of wastewater pollutants: titanium dioxide mediated degradation of methyl orange and beta-naphthol orange.
    Antharjanam S; Philip R; Suresh D
    Ann Chim; 2003; 93(9-10):719-28. PubMed ID: 14672362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilized acclimated biomass-powdered activated carbon for the bioregeneration of granular activated carbon loaded with phenol and o-cresol.
    Toh RH; Lim PE; Seng CE; Adnan R
    Bioresour Technol; 2013 Sep; 143():265-74. PubMed ID: 23796608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of azo dye Acid Orange 7 containing wastewater using up-flow constructed wetland with and without supplementary aeration.
    Ong SA; Uchiyama K; Inadama D; Ishida Y; Yamagiwa K
    Bioresour Technol; 2010 Dec; 101(23):9049-57. PubMed ID: 20678928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of azo dyes by sequential Fenton's oxidation and aerobic biological treatment.
    Tantak NP; Chaudhari S
    J Hazard Mater; 2006 Aug; 136(3):698-705. PubMed ID: 16488538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.