These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 23062866)
1. Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy. McLeod MA; Wilusz RE; Guilak F J Biomech; 2013 Feb; 46(3):586-92. PubMed ID: 23062866 [TBL] [Abstract][Full Text] [Related]
2. Spatial mapping of the biomechanical properties of the pericellular matrix of articular cartilage measured in situ via atomic force microscopy. Darling EM; Wilusz RE; Bolognesi MP; Zauscher S; Guilak F Biophys J; 2010 Jun; 98(12):2848-56. PubMed ID: 20550897 [TBL] [Abstract][Full Text] [Related]
3. Immunofluorescence-guided atomic force microscopy to measure the micromechanical properties of the pericellular matrix of porcine articular cartilage. Wilusz RE; DeFrate LE; Guilak F J R Soc Interface; 2012 Nov; 9(76):2997-3007. PubMed ID: 22675162 [TBL] [Abstract][Full Text] [Related]
4. Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage. Wilusz RE; Zauscher S; Guilak F Osteoarthritis Cartilage; 2013 Dec; 21(12):1895-903. PubMed ID: 24025318 [TBL] [Abstract][Full Text] [Related]
5. A biomechanical role for perlecan in the pericellular matrix of articular cartilage. Wilusz RE; Defrate LE; Guilak F Matrix Biol; 2012 Jul; 31(6):320-7. PubMed ID: 22659389 [TBL] [Abstract][Full Text] [Related]
6. Zonal variations in the three-dimensional morphology of the chondron measured in situ using confocal microscopy. Youn I; Choi JB; Cao L; Setton LA; Guilak F Osteoarthritis Cartilage; 2006 Sep; 14(9):889-97. PubMed ID: 16626979 [TBL] [Abstract][Full Text] [Related]
7. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation. Kim E; Guilak F; Haider MA J Biomech Eng; 2010 Mar; 132(3):031011. PubMed ID: 20459199 [TBL] [Abstract][Full Text] [Related]
8. High resistance of the mechanical properties of the chondrocyte pericellular matrix to proteoglycan digestion by chondroitinase, aggrecanase, or hyaluronidase. Wilusz RE; Guilak F J Mech Behav Biomed Mater; 2014 Oct; 38():183-97. PubMed ID: 24156881 [TBL] [Abstract][Full Text] [Related]
9. Zonal uniformity in mechanical properties of the chondrocyte pericellular matrix: micropipette aspiration of canine chondrons isolated by cartilage homogenization. Guilak F; Alexopoulos LG; Haider MA; Ting-Beall HP; Setton LA Ann Biomed Eng; 2005 Oct; 33(10):1312-8. PubMed ID: 16240080 [TBL] [Abstract][Full Text] [Related]
10. Assessment of biomechanical properties of the extracellular and pericellular matrix and their interconnection throughout the course of osteoarthritis. Danalache M; Jacobi LF; Schwitalle M; Hofmann UK J Biomech; 2019 Dec; 97():109409. PubMed ID: 31629545 [TBL] [Abstract][Full Text] [Related]
11. Zonal changes in the three-dimensional morphology of the chondron under compression: the relationship among cellular, pericellular, and extracellular deformation in articular cartilage. Choi JB; Youn I; Cao L; Leddy HA; Gilchrist CL; Setton LA; Guilak F J Biomech; 2007; 40(12):2596-603. PubMed ID: 17397851 [TBL] [Abstract][Full Text] [Related]
12. Microstructural and elastic properties of the extracellular matrices of the superficial zone of neonatal articular cartilage by atomic force microscopy. Patel RV; Mao JJ Front Biosci; 2003 Jan; 8():a18-25. PubMed ID: 12456328 [TBL] [Abstract][Full Text] [Related]
13. The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage. Han SK; Federico S; Grillo A; Giaquinta G; Herzog W Biomech Model Mechanobiol; 2007 Apr; 6(3):139-50. PubMed ID: 16506020 [TBL] [Abstract][Full Text] [Related]
14. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes. Korhonen RK; Julkunen P; Wilson W; Herzog W J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490 [TBL] [Abstract][Full Text] [Related]
15. The biomechanical role of the chondrocyte pericellular matrix in articular cartilage. Alexopoulos LG; Setton LA; Guilak F Acta Biomater; 2005 May; 1(3):317-25. PubMed ID: 16701810 [TBL] [Abstract][Full Text] [Related]
16. Atomic force microscopy reveals regional variations in the micromechanical properties of the pericellular and extracellular matrices of the meniscus. Sanchez-Adams J; Wilusz RE; Guilak F J Orthop Res; 2013 Aug; 31(8):1218-25. PubMed ID: 23568545 [TBL] [Abstract][Full Text] [Related]
17. Mechanical Cues: Bidirectional Reciprocity in the Extracellular Matrix Drives Mechano-Signalling in Articular Cartilage. Gilbert SJ; Bonnet CS; Blain EJ Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948394 [TBL] [Abstract][Full Text] [Related]
18. A biphasic multiscale study of the mechanical microenvironment of chondrocytes within articular cartilage under unconfined compression. Guo H; Maher SA; Torzilli PA J Biomech; 2014 Aug; 47(11):2721-9. PubMed ID: 24882738 [TBL] [Abstract][Full Text] [Related]
19. Mechanical properties of bovine articular cartilage under microscale indentation loading from atomic force microscopy. Park S; Costa KD; Ateshian GA; Hong KS Proc Inst Mech Eng H; 2009 Apr; 223(3):339-47. PubMed ID: 19405439 [TBL] [Abstract][Full Text] [Related]
20. The deformation behavior and mechanical properties of chondrocytes in articular cartilage. Guilak F; Jones WR; Ting-Beall HP; Lee GM Osteoarthritis Cartilage; 1999 Jan; 7(1):59-70. PubMed ID: 10367015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]