These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23062939)

  • 1. Ferric iron amendment increases Fe(III)-reducing microbial diversity and carbon oxidation in on-site wastewater systems.
    Azam HM; Finneran KT
    Chemosphere; 2013 Jan; 90(4):1435-43. PubMed ID: 23062939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe(III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2⋅8H2O) in septic system wastewater.
    Azam HM; Finneran KT
    Chemosphere; 2014 Feb; 97():1-9. PubMed ID: 24210595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Fe/S ratio on the kinetics and microbial ecology of an Fe(III)-dosed anaerobic wastewater treatment system.
    Ahmed M; Lin O; Saup CM; Wilkins MJ; Lin LS
    J Hazard Mater; 2019 May; 369():593-600. PubMed ID: 30822632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron shuttle-stimulated RDX mineralization and biological production of 4-nitro-2,4-diazabutanal (NDAB) in RDX-contaminated aquifer material.
    Kwon MJ; Finneran KT
    Biodegradation; 2010 Nov; 21(6):923-37. PubMed ID: 20424887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating enhanced sulfate reduction and optimized volatile fatty acids (VFA) composition in anaerobic reactor by Fe (III) addition.
    Liu Y; Zhang Y; Ni BJ
    Environ Sci Technol; 2015 Feb; 49(4):2123-31. PubMed ID: 25606811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial community composition during anaerobic mineralization of tert-butyl alcohol (TBA) in fuel-contaminated aquifer material.
    Wei N; Finneran KT
    Environ Sci Technol; 2011 Apr; 45(7):3012-8. PubMed ID: 21384909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial Degradation of Citric Acid in Low Level Radioactive Waste Disposal: Impact on Biomineralization Reactions.
    Byrd N; Lloyd JR; Small JS; Taylor F; Bagshaw H; Boothman C; Morris K
    Front Microbiol; 2021; 12():565855. PubMed ID: 33995289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions.
    Kwon MJ; O'Loughlin EJ; Boyanov MI; Brulc JM; Johnston ER; Kemner KM; Antonopoulos DA
    PLoS One; 2016; 11(1):e0146689. PubMed ID: 26800443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low molecular weight carboxylic acids in oxidizing porphyry copper tailings.
    Dold B; Blowes DW; Dickhout R; Spangenberg JE; Pfeifer HR
    Environ Sci Technol; 2005 Apr; 39(8):2515-21. PubMed ID: 15884343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure.
    Kantar C; Ari C; Keskin S
    Water Res; 2015 Jun; 76():66-75. PubMed ID: 25792435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater.
    Espejo A; Aguinaco A; Amat AM; Beltrán FJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(4):410-21. PubMed ID: 24345239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic biodegradation of pharmaceutical compounds coupled to dissimilatory manganese (IV) or iron (III) reduction.
    Liu W; Sutton NB; Rijnaarts HHM; Langenhoff AAM
    J Hazard Mater; 2020 Apr; 388():119361. PubMed ID: 30245001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shifting microbial communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations.
    Bray MS; Wu J; Reed BC; Kretz CB; Belli KM; Simister RL; Henny C; Stewart FJ; DiChristina TJ; Brandes JA; Fowle DA; Crowe SA; Glass JB
    Geobiology; 2017 Sep; 15(5):678-689. PubMed ID: 28419718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A membrane bioreactor with iron dosing and acidogenic co-fermentation for enhanced phosphorus removal and recovery in wastewater treatment.
    Li RH; Wang XM; Li XY
    Water Res; 2018 Feb; 129():402-412. PubMed ID: 29175759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process of nitrogen transformation and microbial community structure in the Fe(0)-carbon-based bio-carrier filled in biological aerated filter.
    Deng S; Li D; Yang X; Zhu S; Li J
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6621-30. PubMed ID: 26638971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic microbial Fe(II) oxidation and Fe(III) reduction in coastal marine sediments controlled by organic carbon content.
    Laufer K; Byrne JM; Glombitza C; Schmidt C; Jørgensen BB; Kappler A
    Environ Microbiol; 2016 Sep; 18(9):3159-74. PubMed ID: 27234371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced mineralization of hypersaline wastewater with Fe
    Yang X; Yang Z; Liu Z; Zhang W; Wang D
    Water Sci Technol; 2018 Oct; 78(5-6):1219-1227. PubMed ID: 30339546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer.
    Coates JD; Ellis DJ; Gaw CV; Lovley DR
    Int J Syst Bacteriol; 1999 Oct; 49 Pt 4():1615-22. PubMed ID: 10555343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.