BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23062962)

  • 1. Selective nanodecoration of modified cyclodextrin crystals with gold nanorods.
    Herrera B; Adura C; Yutronic N; Kogan MJ; Jara P
    J Colloid Interface Sci; 2013 Jan; 389(1):42-5. PubMed ID: 23062962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatible gold nanorods: one-step surface functionalization, highly colloidal stability, and low cytotoxicity.
    Liu K; Zheng Y; Lu X; Thai T; Lee NA; Bach U; Gooding JJ
    Langmuir; 2015 May; 31(17):4973-80. PubMed ID: 25874503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of cetyltrimethylammonium bromide-capped gold nanorods to make molecular probes.
    Yu C; Varghese L; Irudayaraj J
    Langmuir; 2007 Aug; 23(17):9114-9. PubMed ID: 17636999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface interactions of gold nanorods and polysaccharides: From clusters to individual nanoparticles.
    de Barros HR; Piovan L; Sassaki GL; de Araujo Sabry D; Mattoso N; Nunes ÁM; Meneghetti MR; Riegel-Vidotti IC
    Carbohydr Polym; 2016 Nov; 152():479-486. PubMed ID: 27516295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity.
    Wang L; Jiang X; Ji Y; Bai R; Zhao Y; Wu X; Chen C
    Nanoscale; 2013 Sep; 5(18):8384-91. PubMed ID: 23873113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags.
    Boca SC; Astilean S
    Nanotechnology; 2010 Jun; 21(23):235601. PubMed ID: 20463383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of bromide in hydrogen peroxide oxidation of CTAB-stabilized gold nanorods in aqueous solutions.
    Zhu Q; Wu J; Zhao J; Ni W
    Langmuir; 2015 Apr; 31(14):4072-7. PubMed ID: 25785656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stabilization and targeting of surfactant-synthesized gold nanorods.
    Rostro-Kohanloo BC; Bickford LR; Payne CM; Day ES; Anderson LJ; Zhong M; Lee S; Mayer KM; Zal T; Adam L; Dinney CP; Drezek RA; West JL; Hafner JH
    Nanotechnology; 2009 Oct; 20(43):434005. PubMed ID: 19801751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CTAB promoted synthesis of Au nanorods--temperature effects and stability considerations.
    Becker R; Liedberg B; Käll PO
    J Colloid Interface Sci; 2010 Mar; 343(1):25-30. PubMed ID: 19954787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near infrared light-driven liquid crystal phase transition enabled by hydrophobic mesogen grafted plasmonic gold nanorods.
    Gutierrez-Cuevas KG; Wang L; Xue C; Singh G; Kumar S; Urbas A; Li Q
    Chem Commun (Camb); 2015 Jun; 51(48):9845-8. PubMed ID: 25989830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative replacement of cetyl trimethylammonium bromide by cationic thiol ligands on the surface of gold nanorods and their extremely large uptake by cancer cells.
    Vigderman L; Manna P; Zubarev ER
    Angew Chem Int Ed Engl; 2012 Jan; 51(3):636-41. PubMed ID: 22086869
    [No Abstract]   [Full Text] [Related]  

  • 12. Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide.
    Fu X; Chen L; Li J; Lin M; You H; Wang W
    Biosens Bioelectron; 2012 Apr; 34(1):227-31. PubMed ID: 22387039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods.
    Smith DK; Korgel BA
    Langmuir; 2008 Feb; 24(3):644-9. PubMed ID: 18184021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The facile removal of CTAB from the surface of gold nanorods.
    He J; Unser S; Bruzas I; Cary R; Shi Z; Mehra R; Aron K; Sagle L
    Colloids Surf B Biointerfaces; 2018 Mar; 163():140-145. PubMed ID: 29291499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iodide in CTAB prevents gold nanorod formation.
    Smith DK; Miller NR; Korgel BA
    Langmuir; 2009 Aug; 25(16):9518-24. PubMed ID: 19413325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass.
    Ferhan AR; Guo L; Kim DH
    Langmuir; 2010 Jul; 26(14):12433-42. PubMed ID: 20557083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of core-shell Au@Ag nanorods induced by catecholamines: A comparative study and an analytical application.
    Gorbunova MV; Apyari VV; Dmitrienko SG; Garshev AV
    Anal Chim Acta; 2016 Sep; 936():185-94. PubMed ID: 27566354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces.
    Horiguchi Y; Honda K; Kato Y; Nakashima N; Niidome Y
    Langmuir; 2008 Oct; 24(20):12026-31. PubMed ID: 18759472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freezing the self-assembly process of gold nanocrystals.
    Abbas A; Tian L; Kattumenu R; Halim A; Singamaneni S
    Chem Commun (Camb); 2012 Feb; 48(11):1677-9. PubMed ID: 22187049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of cetyltrimethylammonium bromide to enhance the biocompatibility of Au nanorods synthesized by a modified seed mediated growth process.
    Choi BS; Iqbal M; Lee T; Kim YH; Tae G
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4670-4. PubMed ID: 19049082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.