BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 23062988)

  • 21. Advanced glycation end-products in diabetic nephropathy.
    Friedman EA
    Nephrol Dial Transplant; 1999; 14 Suppl 3():1-9. PubMed ID: 10382974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advanced glycation endproducts and diabetic nephropathy.
    Makita Z; Yanagisawa K; Kuwajima S; Yoshioka N; Atsumi T; Hasunuma Y; Koike T
    J Diabetes Complications; 1995; 9(4):265-8. PubMed ID: 8573743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The pathogenesis of diabetic nephropathy.
    Dronavalli S; Duka I; Bakris GL
    Nat Clin Pract Endocrinol Metab; 2008 Aug; 4(8):444-52. PubMed ID: 18607402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular mechanisms of diabetic vascular complications.
    Kitada M; Zhang Z; Mima A; King GL
    J Diabetes Investig; 2010 Jun; 1(3):77-89. PubMed ID: 24843412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New perspectives on diabetic vascular complications: the loss of endogenous protective factors induced by hyperglycemia.
    Jeong IK; King GL
    Diabetes Metab J; 2011 Feb; 35(1):8-11. PubMed ID: 21537407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The importance of diabetic nephropathy in current nephrological practice.
    Locatelli F; Canaud B; Eckardt KU; Stenvinkel P; Wanner C; Zoccali C
    Nephrol Dial Transplant; 2003 Sep; 18(9):1716-25. PubMed ID: 12937216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipids and diabetic nephropathy.
    Rosario RF; Prabhakar S
    Curr Diab Rep; 2006 Dec; 6(6):455-62. PubMed ID: 17118229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities.
    Wang KJ; Zhao JL
    Biomed Pharmacother; 2019 Feb; 110():510-517. PubMed ID: 30530231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advanced glycation: how are we progressing to combat this web of sugar anomalies in diabetic nephropathy.
    Forbes JM; Thallas-Bonke V; Cooper ME; Thomas MC
    Curr Pharm Des; 2004; 10(27):3361-72. PubMed ID: 15544521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diabetic nephropathy: protective factors and a new therapeutic paradigm.
    Mima A
    J Diabetes Complications; 2013; 27(5):526-30. PubMed ID: 23619194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between advanced glycation end-products (AGE) and their receptors in the development and progression of diabetic nephropathy - are these receptors valid therapeutic targets.
    Sourris KC; Forbes JM
    Curr Drug Targets; 2009 Jan; 10(1):42-50. PubMed ID: 19149535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA aptamer raised against receptor for advanced glycation end products suppresses renal tubular damage and improves insulin resistance in diabetic mice.
    Sotokawauchi A; Matsui T; Higashimoto Y; Nishino Y; Koga Y; Yagi M; Yamagishi SI
    Diab Vasc Dis Res; 2021; 18(1):1479164121990533. PubMed ID: 33535822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel therapeutic targets for diabetic nephropathy.
    Fukami K; Yamagishi S; Ueda S; Okuda S
    Endocr Metab Immune Disord Drug Targets; 2007 Jun; 7(2):83-92. PubMed ID: 17584148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy.
    Geraldes P; Hiraoka-Yamamoto J; Matsumoto M; Clermont A; Leitges M; Marette A; Aiello LP; Kern TS; King GL
    Nat Med; 2009 Nov; 15(11):1298-306. PubMed ID: 19881493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protective role of sulphoraphane against vascular complications in diabetes.
    Yamagishi S; Matsui T
    Pharm Biol; 2016 Oct; 54(10):2329-39. PubMed ID: 26841240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antiangiogenic endostatin peptide ameliorates renal alterations in the early stage of a type 1 diabetic nephropathy model.
    Ichinose K; Maeshima Y; Yamamoto Y; Kitayama H; Takazawa Y; Hirokoshi K; Sugiyama H; Yamasaki Y; Eguchi K; Makino H
    Diabetes; 2005 Oct; 54(10):2891-903. PubMed ID: 16186390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Current approach in the prevention and treatment of diabetic nephropathy].
    Castiglioni A; Raimondi C; Bocchi B; Vinci S; Garini G; Allegri L; Savazzi GM
    Recenti Prog Med; 1990 Feb; 81(2):99-105. PubMed ID: 2195615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiovascular disease in patients with diabetic nephropathy.
    Aso Y
    Curr Mol Med; 2008 Sep; 8(6):533-43. PubMed ID: 18781960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy.
    Du P; Fan B; Han H; Zhen J; Shang J; Wang X; Li X; Shi W; Tang W; Bao C; Wang Z; Zhang Y; Zhang B; Wei X; Yi F
    Kidney Int; 2013 Aug; 84(2):265-76. PubMed ID: 23594678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advanced glycation end-products in diabetic nephropathy.
    Sugiyama S; Miyata T; Horie K; Iida Y; Tsuyuki M; Tanaka H; Maeda K
    Nephrol Dial Transplant; 1996; 11 Suppl 5():91-4. PubMed ID: 9044316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.