BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23063003)

  • 1. An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii.
    Jamers A; Blust R; De Coen W; Griffin JL; Jones OA
    Aquat Toxicol; 2013 Jan; 126():355-64. PubMed ID: 23063003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules.
    Lavoie M; Le Faucheur S; Fortin C; Campbell PG
    Aquat Toxicol; 2009 Apr; 92(2):65-75. PubMed ID: 19201040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic signatures in Chlamydomonas reinhardtii as Cd biomarkers in metal mixtures.
    Hutchins CM; Simon DF; Zerges W; Wilkinson KJ
    Aquat Toxicol; 2010 Oct; 100(1):120-7. PubMed ID: 20701989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal stoichiometry in predicting Cd and Cu toxicity to a freshwater green alga Chlamydomonas reinhardtii.
    Wang WX; Dei RC
    Environ Pollut; 2006 Jul; 142(2):303-12. PubMed ID: 16310914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ evaluation of cadmium biomarkers in green algae.
    Simon DF; Davis TA; Tercier-Waeber ML; England R; Wilkinson KJ
    Environ Pollut; 2011 Oct; 159(10):2630-6. PubMed ID: 21696872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of copper and cadmium exposure on toxicity endpoints and gene expression in Chlamydomonas reinhardtii.
    Stoiber TL; Shafer MM; Armstrong DE
    Environ Toxicol Chem; 2010 Jan; 29(1):191-200. PubMed ID: 20821435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cadmium accumulation on green algae Chlamydomonas reinhardtii and acid-tolerant Chlamydomonas CPCC 121.
    Samadani M; Perreault F; Oukarroum A; Dewez D
    Chemosphere; 2018 Jan; 191():174-182. PubMed ID: 29032262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM.
    François L; Fortin C; Campbell PG
    Aquat Toxicol; 2007 Aug; 84(2):123-32. PubMed ID: 17651821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of Chlamydomonas reinhardtii to cadmium stress is associated with phototaxis.
    Yu Z; Zhang T; Hao R; Zhu Y
    Environ Sci Process Impacts; 2019 Jun; 21(6):1011-1020. PubMed ID: 31120077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium exposure and phosphorus limitation increases metal content in the freshwater alga Chlamydomonas reinhardtii.
    Webster RE; Dean AP; Pittman JK
    Environ Sci Technol; 2011 Sep; 45(17):7489-96. PubMed ID: 21809879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium- and iron-stress-inducible gene expression in the green alga Chlamydomonas reinhardtii: evidence for H43 protein function in iron assimilation.
    Rubinelli P; Siripornadulsil S; Gao-Rubinelli F; Sayre RT
    Planta; 2002 May; 215(1):1-13. PubMed ID: 12012236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of TiO
    Yu Z; Hao R; Zhang L; Zhu Y
    Ecotoxicol Environ Saf; 2018 Jul; 156():75-86. PubMed ID: 29533210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic multipathway modeling of Cd bioaccumulation in Daphnia magna using waterborne and dietborne exposures.
    Goulet RR; Krack S; Doyle PJ; Hare L; Vigneault B; McGeer JC
    Aquat Toxicol; 2007 Feb; 81(2):117-25. PubMed ID: 17173986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii.
    Wang J; Zhang X; Chen Y; Sommerfeld M; Hu Q
    Chemosphere; 2008 Oct; 73(7):1121-8. PubMed ID: 18768203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-genome re-sequencing and transcriptome reveal cadmium tolerance related genes and pathways in Chlamydomonas reinhardtii.
    Yu Z; Zhang T; Zhu Y
    Ecotoxicol Environ Saf; 2020 Mar; 191():110231. PubMed ID: 31981954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction to oxidative stress by saxitoxin investigated through lipid peroxidation in Neuro 2A cells and Chlamydomonas reinhardtii alga.
    Melegari SP; Perreault F; Moukha S; Popovic R; Creppy EE; Matias WG
    Chemosphere; 2012 Sep; 89(1):38-43. PubMed ID: 22546629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological changes in Chlamydomonas reinhardtii after 1000 generations of selection of cadmium exposure at environmentally relevant concentrations.
    Yu Z; Wei H; Hao R; Chu H; Zhu Y
    Environ Sci Process Impacts; 2018 Jun; 20(6):923-933. PubMed ID: 29725674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii.
    Nestler H; Groh KJ; Schönenberger R; Behra R; Schirmer K; Eggen RI; Suter MJ
    Aquat Toxicol; 2012 Apr; 110-111():214-24. PubMed ID: 22357416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: evidence from transcript expression to physiology.
    Vergauwen L; Hagenaars A; Blust R; Knapen D
    Aquat Toxicol; 2013 Jan; 126():52-62. PubMed ID: 23143039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global expression profiling of Chlamydomonas reinhardtii exposed to trace levels of free cadmium.
    Simon DF; Descombes P; Zerges W; Wilkinson KJ
    Environ Toxicol Chem; 2008 Aug; 27(8):1668-75. PubMed ID: 18384239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.