These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 23063512)
1. FT-IR microspectroscopy of mouse colon tissues: insight into the chemistry of carcinogenesis and diagnostic potential. Cohenford MA; Lim S; Brown C; Chaudhry MA; Sigdel S; Beckelhimer E; Rigas B Am J Pathol; 2012 Dec; 181(6):1961-8. PubMed ID: 23063512 [TBL] [Abstract][Full Text] [Related]
2. Diagnosis of colon cancer with Fourier transform infrared spectroscopy on the malignant colon tissue samples. Xie YB; Liu Q; He F; Guo CG; Wang CF; Zhao P Chin Med J (Engl); 2011 Aug; 124(16):2517-21. PubMed ID: 21933598 [TBL] [Abstract][Full Text] [Related]
3. FT-IR microscopic characterization of normal and malignant human colonic tissues. Salman A; Argov S; Ramesh J; Goldstein J; Sinelnikov I; Guterman H; Mordechai S Cell Mol Biol (Noisy-le-grand); 2001; 47 Online Pub():OL159-66. PubMed ID: 11936863 [TBL] [Abstract][Full Text] [Related]
4. Tracing overlapping biological signals in mid-infrared using colonic tissues as a model system. Sahu RK; Salman A; Mordechai S World J Gastroenterol; 2017 Jan; 23(2):286-296. PubMed ID: 28127202 [TBL] [Abstract][Full Text] [Related]
5. Multicomponent peak modeling of protein secondary structures: comparison of gaussian with lorentzian analytical methods for plant feed and seed molecular biology and chemistry research. Yu P Appl Spectrosc; 2005 Nov; 59(11):1372-80. PubMed ID: 16316515 [TBL] [Abstract][Full Text] [Related]
6. Observation of biochemical imaging changes in human pancreatic cancer tissue using Fourier-transform infrared microspectroscopy. Chen YJ; Cheng YD; Liu HY; Lin PY; Wang CS Chang Gung Med J; 2006; 29(5):518-27. PubMed ID: 17214398 [TBL] [Abstract][Full Text] [Related]
7. Study on the secondary structure of protein in amide I band from human colon cancer tissue by Fourier-transform infrared spectroscopy. Chen YJ; Hsieh YW; Cheng YD; Liao CC Chang Gung Med J; 2001 Sep; 24(9):541-6. PubMed ID: 11725623 [TBL] [Abstract][Full Text] [Related]
8. IR spectral imaging of secreted mucus: a promising new tool for the histopathological recognition of human colonic adenocarcinomas. Travo A; Piot O; Wolthuis R; Gobinet C; Manfait M; Bara J; Forgue-Lafitte ME; Jeannesson P Histopathology; 2010 Jun; 56(7):921-31. PubMed ID: 20500531 [TBL] [Abstract][Full Text] [Related]
9. FT-IR microspectroscopy: a promising method for the rapid identification of Listeria species. Janbu AO; Møretrø T; Bertrand D; Kohler A FEMS Microbiol Lett; 2008 Jan; 278(2):164-70. PubMed ID: 18053065 [TBL] [Abstract][Full Text] [Related]
10. Inflammatory bowel diseases as an intermediate stage between normal and cancer: a FTIR-microspectroscopy approach. Argov S; Sahu RK; Bernshtain E; Salman A; Shohat G; Zelig U; Mordechai S Biopolymers; 2004 Dec; 75(5):384-92. PubMed ID: 15457432 [TBL] [Abstract][Full Text] [Related]
11. Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis. Cohenford MA; Godwin TA; Cahn F; Bhandare P; Caputo TA; Rigas B Gynecol Oncol; 1997 Jul; 66(1):59-65. PubMed ID: 9234922 [TBL] [Abstract][Full Text] [Related]
12. Fourier transform infrared spectroscopy of gallbladder carcinoma cell line. Du JK; Shi JS; Sun XJ; Wang JS; Xu YZ; Wu JG; Zhang YF; Weng SF Hepatobiliary Pancreat Dis Int; 2009 Feb; 8(1):75-8. PubMed ID: 19208520 [TBL] [Abstract][Full Text] [Related]
13. Cell-specific chemotyping and multivariate imaging by combined FT-IR microspectroscopy and orthogonal projections to latent structures (OPLS) analysis reveals the chemical landscape of secondary xylem. Gorzsás A; Stenlund H; Persson P; Trygg J; Sundberg B Plant J; 2011 Jun; 66(5):903-14. PubMed ID: 21332846 [TBL] [Abstract][Full Text] [Related]
14. Infrared spectral histopathology for cancer diagnosis: a novel approach for automated pattern recognition of colon adenocarcinoma. Nallala J; Diebold MD; Gobinet C; Bouché O; Sockalingum GD; Piot O; Manfait M Analyst; 2014 Aug; 139(16):4005-15. PubMed ID: 24932462 [TBL] [Abstract][Full Text] [Related]
16. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches. Gorzsás A; Sundberg B Methods Mol Biol; 2014; 1062():317-52. PubMed ID: 24057375 [TBL] [Abstract][Full Text] [Related]
17. FT-IR microspectroscopic detection of metabolically deuterated compounds in the rat cerebellum: a novel approach for the study of brain metabolism. Wetzel DL; Slatkin DN; LeVine SM Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):15-27. PubMed ID: 9551634 [TBL] [Abstract][Full Text] [Related]
18. Detection of metabolic alterations in non-tumor gastrointestinal tissue of the Apc(Min/+) mouse by (1)H MAS NMR spectroscopy. Backshall A; Alferez D; Teichert F; Wilson ID; Wilkinson RW; Goodlad RA; Keun HC J Proteome Res; 2009 Mar; 8(3):1423-30. PubMed ID: 19159281 [TBL] [Abstract][Full Text] [Related]
19. Comparative evaluation of bioactivity change of crystalline trypsin during compression by chemoinformatics and 2-D Fourier-transform infrared spectroscopy. Otsuka M; Fukui Y; Otsuka K; Ozaki Y Analyst; 2006 Oct; 131(10):1116-21. PubMed ID: 17003859 [TBL] [Abstract][Full Text] [Related]
20. Diagnosis of colon cancer by attenuated total reflectance-Fourier transform infrared microspectroscopy and soft independent modeling of class analogy. Khanmohammadi M; Garmarudi AB; Ghasemi K; Jaliseh HK; Kaviani A Med Oncol; 2009; 26(3):292-7. PubMed ID: 18989795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]