These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 23063636)
1. Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities. Álvarez-Ayuso E; Otones V; Murciego A; García-Sánchez A; Regina IS Sci Total Environ; 2012 Nov; 439():35-43. PubMed ID: 23063636 [TBL] [Abstract][Full Text] [Related]
2. Arsenic distribution in soils and plants of an arsenic impacted former mining area. Otones V; Álvarez-Ayuso E; García-Sánchez A; Santa Regina I; Murciego A Environ Pollut; 2011 Oct; 159(10):2637-47. PubMed ID: 21700372 [TBL] [Abstract][Full Text] [Related]
3. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
4. Lead distribution and its potential risk to the environment: lesson learned from environmental monitoring of abandon mine. Nobuntou W; Parkpian P; Oanh NT; Noomhorm A; Delaune RD; Jugsujinda A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Nov; 45(13):1702-14. PubMed ID: 20853202 [TBL] [Abstract][Full Text] [Related]
5. Arsenic distribution in soils and rye plants of a cropland located in an abandoned mining area. Álvarez-Ayuso E; Abad-Valle P; Murciego A; Villar-Alonso P Sci Total Environ; 2016 Jan; 542(Pt A):238-46. PubMed ID: 26519583 [TBL] [Abstract][Full Text] [Related]
6. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice. Okkenhaug G; Zhu YG; He J; Li X; Luo L; Mulder J Environ Sci Technol; 2012 Mar; 46(6):3155-62. PubMed ID: 22309044 [TBL] [Abstract][Full Text] [Related]
7. Bioavailability of arsenic and antimony in soils from an abandoned mining area, Glendinning (SW Scotland). Gál J; Hursthouse A; Cuthbert S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1263-74. PubMed ID: 17654146 [TBL] [Abstract][Full Text] [Related]
8. Mobility and phytoavailability of antimony in an area impacted by a former stibnite mine exploitation. Álvarez-Ayuso E; Otones V; Murciego A; García-Sánchez A; Regina IS Sci Total Environ; 2013 Apr; 449():260-8. PubMed ID: 23434576 [TBL] [Abstract][Full Text] [Related]
9. Distribution and mobility of arsenic in soils of a mining area (Western Spain). García-Sánchez A; Alonso-Rojo P; Santos-Francés F Sci Total Environ; 2010 Sep; 408(19):4194-201. PubMed ID: 20538319 [TBL] [Abstract][Full Text] [Related]
10. Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. De Gregori I; Fuentes E; Rojas M; Pinochet H; Potin-Gautier M J Environ Monit; 2003 Apr; 5(2):287-95. PubMed ID: 12729270 [TBL] [Abstract][Full Text] [Related]
11. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination. Cidu R; Biddau R; Dore E; Vacca A; Marini L Sci Total Environ; 2014 Nov; 497-498():319-331. PubMed ID: 25137381 [TBL] [Abstract][Full Text] [Related]
12. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Murciego AM; Sánchez AG; González MA; Gil EP; Gordillo CT; Fernández JC; Triguero TB Environ Pollut; 2007 Jan; 145(1):15-21. PubMed ID: 16730108 [TBL] [Abstract][Full Text] [Related]
13. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China. Liao XY; Chen TB; Xie H; Liu YR Environ Int; 2005 Aug; 31(6):791-8. PubMed ID: 15979720 [TBL] [Abstract][Full Text] [Related]
14. Arsenic, antimony, and bismuth uptake and accumulation by plants in an old antimony mine, China. Wei C; Deng Q; Wu F; Fu Z; Xu L Biol Trace Elem Res; 2011 Dec; 144(1-3):1150-8. PubMed ID: 21547400 [TBL] [Abstract][Full Text] [Related]
15. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal. Dahal BM; Fuerhacker M; Mentler A; Karki KB; Shrestha RR; Blum WE Environ Pollut; 2008 Sep; 155(1):157-63. PubMed ID: 18068879 [TBL] [Abstract][Full Text] [Related]
16. Arsenic distribution in a pasture area impacted by past mining activities. Abad-Valle P; Álvarez-Ayuso E; Murciego A; Muñoz-Centeno LM; Alonso-Rojo P; Villar-Alonso P Ecotoxicol Environ Saf; 2018 Jan; 147():228-237. PubMed ID: 28846927 [TBL] [Abstract][Full Text] [Related]
17. Mobilisation and transport of arsenic and antimony in the adjacent environment of Yata gold mine, Guizhou province, China. Zhang G; Liu CQ; Liu H; Hu J; Han G; Li L J Environ Monit; 2009 Sep; 11(9):1570-8. PubMed ID: 19724824 [TBL] [Abstract][Full Text] [Related]
18. Effects of antimony and arsenic on antioxidant enzyme activities of two steppic plant species in an old antimony mining area. Benhamdi A; Bentellis A; Rached O; Du Laing G; Mechakra A Biol Trace Elem Res; 2014 Apr; 158(1):96-104. PubMed ID: 24563031 [TBL] [Abstract][Full Text] [Related]
19. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Okkenhaug G; Zhu YG; Luo L; Lei M; Li X; Mulder J Environ Pollut; 2011 Oct; 159(10):2427-34. PubMed ID: 21767897 [TBL] [Abstract][Full Text] [Related]
20. The fate of arsenic in soil-plant systems. Moreno-Jiménez E; Esteban E; Peñalosa JM Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]