BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 23064157)

  • 1. The synergistic effect of Rh-Ni catalysts on the highly-efficient dehydrogenation of aqueous hydrazine borane for chemical hydrogen storage.
    Zhong DC; Aranishi K; Singh AK; Demirci UB; Xu Q
    Chem Commun (Camb); 2012 Dec; 48(98):11945-7. PubMed ID: 23064157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous dehydrocoupling of amine-borane adducts by skeletal nickel catalysts.
    Robertson AP; Suter R; Chabanne L; Whittell GR; Manners I
    Inorg Chem; 2011 Dec; 50(24):12680-91. PubMed ID: 22103654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane.
    Li PZ; Aranishi K; Xu Q
    Chem Commun (Camb); 2012 Mar; 48(26):3173-5. PubMed ID: 22343827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room-temperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage.
    Singh SK; Zhang XB; Xu Q
    J Am Chem Soc; 2009 Jul; 131(29):9894-5. PubMed ID: 19621950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Ni-Ag/SiO2 catalysts prepared by reduction in aqueous hydrazine.
    Wojcieszak R; Monteverdi S; Ghanbaja J; Bettahar MM
    J Colloid Interface Sci; 2008 Jan; 317(1):166-74. PubMed ID: 17927996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The catalytic dehydrogenation of ammonia-borane involving an unexpected hydrogen transfer to ligated carbene and subsequent carbon-hydrogen activation.
    Yang X; Hall MB
    J Am Chem Soc; 2008 Feb; 130(6):1798-9. PubMed ID: 18211066
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of the NH2 substituent on NH3: hydrazine as an alternative for ammonia in hydrogen release in the presence of boranes and alanes.
    Vinh-Son N; Swinnen S; Matus MH; Nguyen MT; Dixon DA
    Phys Chem Chem Phys; 2009 Aug; 11(30):6339-44. PubMed ID: 19809664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of nanoscale Ni-B amorphous alloys and their application in the selective hydrogenation of cinnamic acid.
    Bai G; Dong H; Zhao Z; Wang Y; Chen Q; Qiu M
    J Nanosci Nanotechnol; 2013 Jul; 13(7):5012-6. PubMed ID: 23901524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.
    Sun D; Mazumder V; Metin Ö; Sun S
    ACS Nano; 2011 Aug; 5(8):6458-64. PubMed ID: 21766875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urchin-Like Amorphous Ni2B Alloys: Efficient Antibacterial Materials and Catalysts for Hydrous Hydrazine Decomposition to Produce H2.
    Deng M; Fu SY; Yang F; Wu P; Tong DG
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2394-400. PubMed ID: 27455647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium hydrazinidoborane: a chemical hydrogen-storage material.
    Moury R; Demirci UB; Ichikawa T; Filinchuk Y; Chiriac R; van der Lee A; Miele P
    ChemSusChem; 2013 Apr; 6(4):667-73. PubMed ID: 23447516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium-catalyzed dehydrogenation of ammonia boranes.
    Blaquiere N; Diallo-Garcia S; Gorelsky SI; Black DA; Fagnou K
    J Am Chem Soc; 2008 Oct; 130(43):14034-5. PubMed ID: 18831582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.
    Jiang HL; Singh SK; Yan JM; Zhang XB; Xu Q
    ChemSusChem; 2010 May; 3(5):541-9. PubMed ID: 20379965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly active and coke-resistant steam reforming catalyst comprising uniform nickel-iron alloy nanoparticles.
    Koike M; Li D; Nakagawa Y; Tomishige K
    ChemSusChem; 2012 Dec; 5(12):2312-4. PubMed ID: 23135797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable aqueous phase synthesis and shape-dependent electrochemical properties of rhodium nanostructures.
    Yuan Q; Zhou Z; Zhuang J; Wang X
    Inorg Chem; 2010 Jun; 49(12):5515-21. PubMed ID: 20499921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions.
    Metin Ö; Sun X; Sun S
    Nanoscale; 2013 Feb; 5(3):910-2. PubMed ID: 23254519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage.
    Xi P; Chen F; Xie G; Ma C; Liu H; Shao C; Wang J; Xu Z; Xu X; Zeng Z
    Nanoscale; 2012 Sep; 4(18):5597-601. PubMed ID: 22732933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic enantioselective hydrogenation of N-alkoxycarbonyl hydrazones: a practical synthesis of chiral hydrazines.
    Yoshikawa N; Tan L; McWilliams JC; Ramasamy D; Sheppard R
    Org Lett; 2010 Jan; 12(2):276-9. PubMed ID: 20017501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane.
    Zahmakiran M; Ozkar S
    Inorg Chem; 2009 Sep; 48(18):8955-64. PubMed ID: 19702246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indole synthesis by rhodium(III)-catalyzed hydrazine-directed C-H activation: redox-neutral and traceless by N-N bond cleavage.
    Zhao D; Shi Z; Glorius F
    Angew Chem Int Ed Engl; 2013 Nov; 52(47):12426-9. PubMed ID: 24222579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.