These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23064317)

  • 1. The unanticipated complexity of the selectivity-filter glutamates of nicotinic receptors.
    Cymes GD; Grosman C
    Nat Chem Biol; 2012 Dec; 8(12):975-81. PubMed ID: 23064317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the pKa values of basic and acidic side chains in ion channels using electrophysiological recordings: a robust approach to an elusive problem.
    Cymes GD; Grosman C
    Proteins; 2011 Dec; 79(12):3485-93. PubMed ID: 21744391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Side-chain conformation at the selectivity filter shapes the permeation free-energy landscape of an ion channel.
    Harpole TJ; Grosman C
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):E3196-205. PubMed ID: 25049389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore size and negative charge as structural determinants of permeability in the Torpedo nicotinic acetylcholine receptor channel.
    Wang F; Imoto K
    Proc Biol Sci; 1992 Oct; 250(1327):11-7. PubMed ID: 1281328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bridging the gap between structural models of nicotinic receptor superfamily ion channels and their corresponding functional states.
    Gonzalez-Gutierrez G; Grosman C
    J Mol Biol; 2010 Nov; 403(5):693-705. PubMed ID: 20863833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single P-loop glutamate point mutation to either lysine or arginine switches the cation-anion selectivity of the CNGA2 channel.
    Qu W; Moorhouse AJ; Chandra M; Pierce KD; Lewis TM; Barry PH
    J Gen Physiol; 2006 Apr; 127(4):375-89. PubMed ID: 16533895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The selectivity filter of a ligand-gated ion channel. The helix-M2 model of the ion channel of the nicotinic acetylcholine receptor.
    Hucho F; Hilgenfeld R
    FEBS Lett; 1989 Oct; 257(1):17-23. PubMed ID: 2478394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinked-helices model of the nicotinic acetylcholine receptor ion channel and its complexes with blockers: simulation by the Monte Carlo minimization method.
    Tikhonov DB; Zhorov BS
    Biophys J; 1998 Jan; 74(1):242-55. PubMed ID: 9449326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatics and the ion selectivity of ligand-gated channels.
    Adcock C; Smith GR; Sansom MS
    Biophys J; 1998 Sep; 75(3):1211-22. PubMed ID: 9726923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monovalent and divalent cation permeability and block of neuronal nicotinic receptor channels in rat parasympathetic ganglia.
    Nutter TJ; Adams DJ
    J Gen Physiol; 1995 Jun; 105(6):701-23. PubMed ID: 7561740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of the charge selectivity of nicotinic acetylcholine receptor and related ligand-gated ion channels.
    Corringer PJ; Bertrand S; Galzi JL; Devillers-ThiƩry A; Changeux JP; Bertrand D
    Novartis Found Symp; 1999; 225():215-24; discussion 224-30. PubMed ID: 10472058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Crucial Role for Side-Chain Conformation in the Versatile Charge Selectivity of Cys-Loop Receptors.
    Harpole TJ; Grosman C
    Biophys J; 2019 May; 116(9):1667-1681. PubMed ID: 31005237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable pKa values and the basis of opposite charge selectivities in nicotinic-type receptors.
    Cymes GD; Grosman C
    Nature; 2011 May; 474(7352):526-30. PubMed ID: 21602825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the origin of ion selectivity in the Cys-loop receptor family.
    Sine SM; Wang HL; Hansen S; Taylor P
    J Mol Neurosci; 2010 Jan; 40(1-2):70-6. PubMed ID: 19728176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, diversity, and ionic permeability of neuronal and muscle acetylcholine receptors.
    Dani JA
    EXS; 1993; 66():47-59. PubMed ID: 7505663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of Na+ and Mg2+ ions in acetylcholine receptor channels of frog skeletal muscle changes in character with an increase in agonist concentration.
    Manthey AA
    Pflugers Arch; 1995 Oct; 430(6):894-900. PubMed ID: 8594541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion channels: molecular basis of ion selectivity.
    Imoto K
    FEBS Lett; 1993 Jun; 325(1-2):100-3. PubMed ID: 7685711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor.
    Sansom MS; Adcock C; Smith GR
    J Struct Biol; 1998; 121(2):246-62. PubMed ID: 9615441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification by protons of frog skeletal muscle KATP channels: effects on ion conduction and nucleotide inhibition.
    Vivaudou M; Forestier C
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):629-45. PubMed ID: 7473225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular pore structure of voltage-gated sodium and calcium channels.
    Heinemann SH; Schlief T; Mori Y; Imoto K
    Braz J Med Biol Res; 1994 Dec; 27(12):2781-802. PubMed ID: 7550000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.