These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 23064336)
1. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains. Henderson CM; Lozada-Contreras M; Jiranek V; Longo ML; Block DE Appl Environ Microbiol; 2013 Jan; 79(1):91-104. PubMed ID: 23064336 [TBL] [Abstract][Full Text] [Related]
2. Fermentation temperature modulates phosphatidylethanolamine and phosphatidylinositol levels in the cell membrane of Saccharomyces cerevisiae. Henderson CM; Zeno WF; Lerno LA; Longo ML; Block DE Appl Environ Microbiol; 2013 Sep; 79(17):5345-56. PubMed ID: 23811519 [TBL] [Abstract][Full Text] [Related]
3. Analysis of major phospholipid species and ergosterol in fermenting industrial yeast strains using atmospheric pressure ionization ion-trap mass spectrometry. Henderson CM; Lozada-Contreras M; Naravane Y; Longo ML; Block DE J Agric Food Chem; 2011 Dec; 59(24):12761-70. PubMed ID: 21995817 [TBL] [Abstract][Full Text] [Related]
4. Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Henderson CM; Block DE Appl Environ Microbiol; 2014 May; 80(10):2966-72. PubMed ID: 24610851 [TBL] [Abstract][Full Text] [Related]
5. Lipid Composition Analysis Reveals Mechanisms of Ethanol Tolerance in the Model Yeast Lairón-Peris M; Routledge SJ; Linney JA; Alonso-Del-Real J; Spickett CM; Pitt AR; Guillamón JM; Barrio E; Goddard AD; Querol A Appl Environ Microbiol; 2021 May; 87(12):e0044021. PubMed ID: 33771787 [TBL] [Abstract][Full Text] [Related]
7. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation. Teixeira MC; Godinho CP; Cabrito TR; Mira NP; Sá-Correia I Microb Cell Fact; 2012 Jul; 11():98. PubMed ID: 22839110 [TBL] [Abstract][Full Text] [Related]
8. Interaction of 4-ethylphenol, pH, sucrose and ethanol on the growth and fermentation capacity of the industrial strain of Saccharomyces cerevisiae PE-2. Covre EA; Silva LFL; Bastos RG; Ceccato-Antonini SR World J Microbiol Biotechnol; 2019 Aug; 35(9):136. PubMed ID: 31432249 [TBL] [Abstract][Full Text] [Related]
9. Occurrence and enological properties of two new non-conventional yeasts (Nakazawaea ishiwadae and Lodderomyces elongisporus) in wine fermentations. Ruiz J; Ortega N; Martín-Santamaría M; Acedo A; Marquina D; Pascual O; Rozès N; Zamora F; Santos A; Belda I Int J Food Microbiol; 2019 Sep; 305():108255. PubMed ID: 31252247 [TBL] [Abstract][Full Text] [Related]
11. Ethanol tolerance of sugar transport, and the rectification of stuck wine fermentations. Santos J; Sousa MJ; Cardoso H; Inácio J; Silva S; Spencer-Martins I; Leão C Microbiology (Reading); 2008 Feb; 154(Pt 2):422-430. PubMed ID: 18227246 [TBL] [Abstract][Full Text] [Related]
12. Performance of several Saccharomyces strains for the alcoholic fermentation of sugar-sweetened high-strength wastewaters: Comparative analysis and kinetic modelling. Comelli RN; Seluy LG; Isla MA N Biotechnol; 2016 Dec; 33(6):874-882. PubMed ID: 27702688 [TBL] [Abstract][Full Text] [Related]
13. Dynamic lipidomic insights into the adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation. Zhou X; Zhou J; Tian H; Yuan Y OMICS; 2010 Oct; 14(5):563-74. PubMed ID: 20955009 [TBL] [Abstract][Full Text] [Related]
15. Influence of Williopsis saturnus yeasts in combination with Saccharomyces cerevisiae on wine fermentation. Erten H; Tanguler H Lett Appl Microbiol; 2010 May; 50(5):474-9. PubMed ID: 20214731 [TBL] [Abstract][Full Text] [Related]
16. Influence of ergosterol and phytosterols on wine alcoholic fermentation with Girardi-Piva G; Casalta E; Legras JL; Nidelet T; Pradal M; Macna F; Ferreira D; Ortiz-Julien A; Tesnière C; Galeote V; Mouret JR Front Microbiol; 2022; 13():966245. PubMed ID: 36160262 [TBL] [Abstract][Full Text] [Related]
17. Potential use of Starmerella bacillaris as fermentation starter for the production of low-alcohol beverages obtained from unripe grapes. Lemos Junior WJF; Nadai C; Crepalde LT; de Oliveira VS; de Matos AD; Giacomini A; Corich V Int J Food Microbiol; 2019 Aug; 303():1-8. PubMed ID: 31102962 [TBL] [Abstract][Full Text] [Related]
18. Advances in yeast alcoholic fermentations for the production of bioethanol, beer and wine. Eliodório KP; Cunha GCGE; Müller C; Lucaroni AC; Giudici R; Walker GM; Alves SL; Basso TO Adv Appl Microbiol; 2019; 109():61-119. PubMed ID: 31677647 [TBL] [Abstract][Full Text] [Related]
19. Relationship between ethanol tolerance, H+ -ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Aguilera F; Peinado RA; Millán C; Ortega JM; Mauricio JC Int J Food Microbiol; 2006 Jul; 110(1):34-42. PubMed ID: 16690148 [TBL] [Abstract][Full Text] [Related]
20. Specific Phenotypic Traits of Starmerella bacillaris Related to Nitrogen Source Consumption and Central Carbon Metabolite Production during Wine Fermentation. Englezos V; Cocolin L; Rantsiou K; Ortiz-Julien A; Bloem A; Dequin S; Camarasa C Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29858207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]