These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 23064336)
21. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation. Dong SJ; Yi CF; Li H Int J Biochem Cell Biol; 2015 Dec; 69():196-203. PubMed ID: 26515124 [TBL] [Abstract][Full Text] [Related]
22. Biocontrol of Brettanomyces/Dekkera bruxellensis in alcoholic fermentations using saccharomycin-overproducing Saccharomyces cerevisiae strains. Branco P; Sabir F; Diniz M; Carvalho L; Albergaria H; Prista C Appl Microbiol Biotechnol; 2019 Apr; 103(7):3073-3083. PubMed ID: 30734124 [TBL] [Abstract][Full Text] [Related]
23. Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae. Englezos V; Cravero F; Torchio F; Rantsiou K; Ortiz-Julien A; Lambri M; Gerbi V; Rolle L; Cocolin L Food Microbiol; 2018 Feb; 69():179-188. PubMed ID: 28941899 [TBL] [Abstract][Full Text] [Related]
24. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae. Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879 [TBL] [Abstract][Full Text] [Related]
25. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation. Sun XY; Zhao Y; Liu LL; Jia B; Zhao F; Huang WD; Zhan JC PLoS One; 2015; 10(6):e0128611. PubMed ID: 26030864 [TBL] [Abstract][Full Text] [Related]
26. Sulfur dioxide addition at crush alters Saccharomyces cerevisiae strain composition in spontaneous fermentations at two Canadian wineries. Morgan SC; Scholl CM; Benson NL; Stone ML; Durall DM Int J Food Microbiol; 2017 Mar; 244():96-102. PubMed ID: 28086153 [TBL] [Abstract][Full Text] [Related]
27. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301 [TBL] [Abstract][Full Text] [Related]
28. Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: cell lipid composition, membrane integrity, viability and fermentative activity. Mannazzu I; Angelozzi D; Belviso S; Budroni M; Farris GA; Goffrini P; Lodi T; Marzona M; Bardi L Int J Food Microbiol; 2008 Jan; 121(1):84-91. PubMed ID: 18055051 [TBL] [Abstract][Full Text] [Related]
29. Correlation between cell lipid content, gene expression and fermentative behaviour of two Saccharomyces cerevisiae wine strains. Zara G; Bardi L; Belviso S; Farris GA; Zara S; Budroni M J Appl Microbiol; 2008 Mar; 104(3):906-14. PubMed ID: 17961155 [TBL] [Abstract][Full Text] [Related]
30. Lipid nutrition of Saccharomyces cerevisiae in winemaking. Belviso S; Bardi L; Bartolini AB; Marzona M Can J Microbiol; 2004 Sep; 50(9):669-74. PubMed ID: 15644919 [TBL] [Abstract][Full Text] [Related]
31. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. Berthels NJ; Cordero Otero RR; Bauer FF; Thevelein JM; Pretorius IS FEMS Yeast Res; 2004 May; 4(7):683-9. PubMed ID: 15093771 [TBL] [Abstract][Full Text] [Related]
32. Kinetic model for nitrogen-limited wine fermentations. Cramer AC; Vlassides S; Block DE Biotechnol Bioeng; 2002 Jan; 77(1):49-60. PubMed ID: 11745173 [TBL] [Abstract][Full Text] [Related]
33. Comparative studies on the fermentation performance of autochthonous Saccharomyces cerevisiae strains in Chinese light-fragrant liquor during solid-state or submerged fermentation. Kong Y; Wu Q; Xu Y J Appl Microbiol; 2017 Apr; 122(4):964-973. PubMed ID: 27981792 [TBL] [Abstract][Full Text] [Related]
34. The vinification of partially dried grapes: a comparative fermentation study of Saccharomyces cerevisiae strains under high sugar stress. Malacrinò P; Tosi E; Caramia G; Prisco R; Zapparoli G Lett Appl Microbiol; 2005; 40(6):466-72. PubMed ID: 15892744 [TBL] [Abstract][Full Text] [Related]
35. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation. Chen S; Xu Y Appl Biochem Biotechnol; 2014 Aug; 173(7):1940-54. PubMed ID: 24879599 [TBL] [Abstract][Full Text] [Related]
36. Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. Chi Z; Arneborg N J Appl Microbiol; 1999 Jun; 86(6):1047-52. PubMed ID: 10389252 [TBL] [Abstract][Full Text] [Related]
37. Selection of Yeast Strains for Tequila Fermentation Based on Growth Dynamics in Combined Fructose and Ethanol Media. Aldrete-Tapia JA; Miranda-Castilleja DE; Arvizu-Medrano SM; Hernández-Iturriaga M J Food Sci; 2018 Feb; 83(2):419-423. PubMed ID: 29337351 [TBL] [Abstract][Full Text] [Related]
38. Correlation between ethanol stress and cellular fatty acid composition of alcohol producing non-Saccharomyces in comparison with Saccharomyces cerevisiae by multivariate techniques. Archana KM; Ravi R; Anu-Appaiah KA J Food Sci Technol; 2015 Oct; 52(10):6770-6. PubMed ID: 26396428 [TBL] [Abstract][Full Text] [Related]
39. Effect of initial ph on growth characteristics and fermentation properties of Saccharomyces cerevisiae. Liu X; Jia B; Sun X; Ai J; Wang L; Wang C; Zhao F; Zhan J; Huang W J Food Sci; 2015 Apr; 80(4):M800-8. PubMed ID: 25777552 [TBL] [Abstract][Full Text] [Related]
40. Proteomic analysis of a distilling strain of Saccharomyces cerevisiae during industrial grain fermentation. Hansen R; Pearson SY; Brosnan JM; Meaden PG; Jamieson DJ Appl Microbiol Biotechnol; 2006 Aug; 72(1):116-125. PubMed ID: 16820951 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]