These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 23064336)
41. Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents. Kim SK; Jo JH; Jin YS; Seo JH Bioprocess Biosyst Eng; 2017 May; 40(5):683-691. PubMed ID: 28120125 [TBL] [Abstract][Full Text] [Related]
42. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae. Djordjević R; Gibson B; Sandell M; de Billerbeck GM; Bugarski B; Leskošek-Čukalović I; Vunduk J; Nikićević N; Nedović V Yeast; 2015 Jan; 32(1):271-9. PubMed ID: 25418076 [TBL] [Abstract][Full Text] [Related]
43. Engineering high-gravity fermentations for ethanol production at elevated temperature with Saccharomyces cerevisiae. Caspeta L; Coronel J; Montes de Oca A; Abarca E; González L; Martínez A Biotechnol Bioeng; 2019 Oct; 116(10):2587-2597. PubMed ID: 31282999 [TBL] [Abstract][Full Text] [Related]
44. ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Landolfo S; Politi H; Angelozzi D; Mannazzu I Biochim Biophys Acta; 2008 Jun; 1780(6):892-8. PubMed ID: 18395524 [TBL] [Abstract][Full Text] [Related]
45. Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds. Beltran G; Novo M; Guillamón JM; Mas A; Rozès N Int J Food Microbiol; 2008 Jan; 121(2):169-77. PubMed ID: 18068842 [TBL] [Abstract][Full Text] [Related]
46. Investigating the biochemical and fermentation attributes of Lachancea species and strains: Deciphering the potential contribution to wine chemical composition. Porter TJ; Divol B; Setati ME Int J Food Microbiol; 2019 Feb; 290():273-287. PubMed ID: 30412799 [TBL] [Abstract][Full Text] [Related]
47. Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae. Shekhawat K; Bauer FF; Setati ME Appl Microbiol Biotechnol; 2017 Mar; 101(6):2479-2491. PubMed ID: 27913851 [TBL] [Abstract][Full Text] [Related]
48. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration. Quirós M; Rojas V; Gonzalez R; Morales P Int J Food Microbiol; 2014 Jul; 181():85-91. PubMed ID: 24831930 [TBL] [Abstract][Full Text] [Related]
49. Temperature-dependent kinetic model for nitrogen-limited wine fermentations. Coleman MC; Fish R; Block DE Appl Environ Microbiol; 2007 Sep; 73(18):5875-84. PubMed ID: 17616615 [TBL] [Abstract][Full Text] [Related]
50. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883 [TBL] [Abstract][Full Text] [Related]
51. The use of indigenous Saccharomyces cerevisiae and Starmerella bacillaris strains as a tool to create chemical complexity in local wines. Nisiotou A; Sgouros G; Mallouchos A; Nisiotis CS; Michaelidis C; Tassou C; Banilas G Food Res Int; 2018 Sep; 111():498-508. PubMed ID: 30007712 [TBL] [Abstract][Full Text] [Related]
52. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. Wang PM; Zheng DQ; Chi XQ; Li O; Qian CD; Liu TZ; Zhang XY; Du FG; Sun PY; Qu AM; Wu XC Bioresour Technol; 2014; 152():371-6. PubMed ID: 24316480 [TBL] [Abstract][Full Text] [Related]
53. Further investigation of relationships between membrane fluidity and ethanol tolerance in Saccharomyces cerevisiae. Ishmayana S; Kennedy UJ; Learmonth RP World J Microbiol Biotechnol; 2017 Nov; 33(12):218. PubMed ID: 29181637 [TBL] [Abstract][Full Text] [Related]
54. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae. Volschenk H; Viljoen-Bloom M; Subden RE; van Vuuren HJ Yeast; 2001 Jul; 18(10):963-70. PubMed ID: 11447602 [TBL] [Abstract][Full Text] [Related]
55. Survival rate of wine-related yeasts during alcoholic fermentation assessed by direct live/dead staining combined with fluorescence in situ hybridization. Branco P; Monteiro M; Moura P; Albergaria H Int J Food Microbiol; 2012 Aug; 158(1):49-57. PubMed ID: 22819715 [TBL] [Abstract][Full Text] [Related]
56. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis. Jetti KD; Gns RR; Garlapati D; Nammi SK Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988 [TBL] [Abstract][Full Text] [Related]
57. Microbial contamination of fuel ethanol fermentations. Beckner M; Ivey ML; Phister TG Lett Appl Microbiol; 2011 Oct; 53(4):387-94. PubMed ID: 21770989 [TBL] [Abstract][Full Text] [Related]
58. Lipid composition of wine strains of Saccharomyces kudriavzevii and Saccharomyces cerevisiae grown at low temperature. Tronchoni J; Rozès N; Querol A; Guillamón JM Int J Food Microbiol; 2012 Apr; 155(3):191-8. PubMed ID: 22405355 [TBL] [Abstract][Full Text] [Related]
59. Wine produced from date palm (Phoenix dactylifera L.) fruits using Saccharomyces cerevisiae X01 isolated from Nigerian locally fermented beverages. Oladoja EO; Oyewole OA; Okeke SK; Azuh VO; Oladoja OI; Jagaba A Arch Microbiol; 2021 Jan; 203(1):193-204. PubMed ID: 32803346 [TBL] [Abstract][Full Text] [Related]
60. Assimilation of grape phytosterols by Saccharomyces cerevisiae and their impact on enological fermentations. Luparia V; Soubeyrand V; Berges T; Julien A; Salmon JM Appl Microbiol Biotechnol; 2004 Jul; 65(1):25-32. PubMed ID: 14745520 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]