BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23064346)

  • 21. Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression.
    Malpica R; Sandoval GR; Rodríguez C; Franco B; Georgellis D
    Antioxid Redox Signal; 2006; 8(5-6):781-95. PubMed ID: 16771670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally.
    Park DM; Akhtar MS; Ansari AZ; Landick R; Kiley PJ
    PLoS Genet; 2013; 9(10):e1003839. PubMed ID: 24146625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutational analysis of signal transduction by ArcB, a membrane sensor protein responsible for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli.
    Iuchi S; Lin EC
    J Bacteriol; 1992 Jun; 174(12):3972-80. PubMed ID: 1597416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorelay as the sole physiological route of signal transmission by the arc two-component system of Escherichia coli.
    Kwon O; Georgellis D; Lin EC
    J Bacteriol; 2000 Jul; 182(13):3858-62. PubMed ID: 10851007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorylation/dephosphorylation of the receiver module at the conserved aspartate residue controls transphosphorylation activity of histidine kinase in sensor protein ArcB of Escherichia coli.
    Iuchi S
    J Biol Chem; 1993 Nov; 268(32):23972-80. PubMed ID: 8226939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The SixA phospho-histidine phosphatase modulates the ArcB phosphorelay signal transduction in Escherichia coli.
    Matsubara M; Mizuno T
    FEBS Lett; 2000 Mar; 470(2):118-24. PubMed ID: 10734219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purification and phosphorylation of the Arc regulatory components of Escherichia coli.
    Iuchi S; Lin EC
    J Bacteriol; 1992 Sep; 174(17):5617-23. PubMed ID: 1512197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical study of ArcB and its dimerization, interaction with anaerobic metabolites, and activation of ArcA.
    Padilla-Vaca F; de la Mora J; García-Contreras R; Ramírez-Prado JH; Vicente-Gómez M; Vargas-Gasca F; Anaya-Velázquez F; Páramo-Pérez I; Rangel-Serrano Á; Cuéllar-Mata P; Vargas-Maya NI; Franco B
    PeerJ; 2023; 11():e16309. PubMed ID: 37849831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Routes of phosphoryl group transfer during signal transmission and signal decay in the dimeric sensor histidine kinase ArcB.
    Teran-Melo JL; Peña-Sandoval GR; Silva-Jimenez H; Rodriguez C; Alvarez AF; Georgellis D
    J Biol Chem; 2018 Aug; 293(34):13214-13223. PubMed ID: 29945971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli.
    Mika F; Hengge R
    Genes Dev; 2005 Nov; 19(22):2770-81. PubMed ID: 16291649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli.
    Zhang X; Shanmugam KT; Ingram LO
    Appl Environ Microbiol; 2010 Apr; 76(8):2397-401. PubMed ID: 20154114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Escherichia coli arcA mutants: metabolic profile characterization of microaerobic cultures using glycerol as a carbon source.
    Nikel PI; Pettinari MJ; Ramírez MC; Galvagno MA; Méndez BS
    J Mol Microbiol Biotechnol; 2008; 15(1):48-54. PubMed ID: 18349550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphotransfer circuitry of the putative multi-signal transducer, ArcB, of Escherichia coli: in vitro studies with mutants.
    Tsuzuki M; Ishige K; Mizuno T
    Mol Microbiol; 1995 Dec; 18(5):953-62. PubMed ID: 8825099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytochrome d but not cytochrome o rescues the toluidine blue growth sensitivity of arc mutants of Escherichia coli.
    Alvarez AF; Malpica R; Contreras M; Escamilla E; Georgellis D
    J Bacteriol; 2010 Jan; 192(2):391-9. PubMed ID: 19897650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ArcB sensor kinase of Escherichia coli autophosphorylates by an intramolecular reaction.
    Peña-Sandoval GR; Georgellis D
    J Bacteriol; 2010 Mar; 192(6):1735-9. PubMed ID: 20097862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physical, functional and conditional interactions between ArcAB and phage shock proteins upon secretin-induced stress in Escherichia coli.
    Jovanovic G; Engl C; Buck M
    Mol Microbiol; 2009 Oct; 74(1):16-28. PubMed ID: 19682256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments.
    Iuchi S; Weiner L
    J Biochem; 1996 Dec; 120(6):1055-63. PubMed ID: 9010748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The ArcB leucine zipper domain is required for proper ArcB signaling.
    Nuñez Oreza LA; Alvarez AF; Arias-Olguín II; Torres Larios A; Georgellis D
    PLoS One; 2012; 7(5):e38187. PubMed ID: 22666479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crosstalk of Escherichia coli FadR with global regulators in expression of fatty acid transport genes.
    Feng Y; Cronan JE
    PLoS One; 2012; 7(9):e46275. PubMed ID: 23029459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli.
    Alexeeva S; de Kort B; Sawers G; Hellingwerf KJ; de Mattos MJ
    J Bacteriol; 2000 Sep; 182(17):4934-40. PubMed ID: 10940038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.