BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 2306456)

  • 21. Interaction of lipophilic peptides derived from mastoparan with phospholipid vesicles.
    Niidome T; Kawakami R; Okamoto K; Ohmori N; Mihara H; Aoyagi H
    J Pept Res; 1997 Dec; 50(6):458-64. PubMed ID: 9440047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A conserved motif in the tail domain of vinculin mediates association with and insertion into acidic phospholipid bilayers.
    Johnson RP; Niggli V; Durrer P; Craig SW
    Biochemistry; 1998 Jul; 37(28):10211-22. PubMed ID: 9665728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A peptide of nine amino acid residues from alpha-sarcin cytotoxin is a membrane-perturbing structure.
    Mancheño JM; Martínez del Pozo A; Albar JP; Oñaderra M; Gavilanes JG
    J Pept Res; 1998 Feb; 51(2):142-8. PubMed ID: 9580217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids.
    Ladokhin AS; Selsted ME; White SH
    Biophys J; 1997 Feb; 72(2 Pt 1):794-805. PubMed ID: 9017204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of peptide structure in lipid-peptide interactions: a fluorescence study of the binding of pentagastrin-related pentapeptides to phospholipid vesicles.
    Surewicz WK; Epand RM
    Biochemistry; 1984 Dec; 23(25):6072-7. PubMed ID: 6525344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of alpha-helical peptides with phospholipid membrane: effects of chain length and hydrophobicity of peptides.
    Ohmori N; Niidome T; Hatakeyama T; Mihara H; Aoyagi H
    J Pept Res; 1998 Feb; 51(2):103-9. PubMed ID: 9516044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers.
    Wyman TB; Nicol F; Zelphati O; Scaria PV; Plank C; Szoka FC
    Biochemistry; 1997 Mar; 36(10):3008-17. PubMed ID: 9062132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fusogenic activity of hepadnavirus peptides corresponding to sequences downstream of the putative cleavage site.
    Rodríguez-Crespo I; Núñez E; Yélamos B; Gómez-Gutiérrez J; Albar JP; Peterson DL; Gavilanes F
    Virology; 1999 Aug; 261(1):133-42. PubMed ID: 10441561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of staphylococcal delta-toxin and synthetic analogues with erythrocytes and phospholipid vesicles. Biological and physical properties of the amphipathic peptides.
    Alouf JE; Dufourcq J; Siffert O; Thiaudiere E; Geoffroy C
    Eur J Biochem; 1989 Aug; 183(2):381-90. PubMed ID: 2474443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions of synthetic peptide analogs of the class A amphipathic helix with lipids. Evidence for the snorkel hypothesis.
    Mishra VK; Palgunachari MN; Segrest JP; Anantharamaiah GM
    J Biol Chem; 1994 Mar; 269(10):7185-91. PubMed ID: 8125930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions of VIP with rigid phospholipid bilayers: implications for vasoreactivity.
    Onyüksel H; Ashok B; Dagar S; Sethi V; Rubinstein I
    Peptides; 2003 Feb; 24(2):281-6. PubMed ID: 12668213
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationship between antimicrobial activity and amphiphilic property of basic model peptides.
    Lee S; Mihara H; Aoyagi H; Kato T; Izumiya N; Yamasaki N
    Biochim Biophys Acta; 1986 Nov; 862(1):211-9. PubMed ID: 3768364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphological behavior of acidic and neutral liposomes induced by basic amphiphilic alpha-helical peptides with systematically varied hydrophobic-hydrophilic balance.
    Kitamura A; Kiyota T; Tomohiro M; Umeda A; Lee S; Inoue T; Sugihara G
    Biophys J; 1999 Mar; 76(3):1457-68. PubMed ID: 10049327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers.
    Plasencia I; Rivas L; Keough KM; Marsh D; Pérez-Gil J
    Biochem J; 2004 Jan; 377(Pt 1):183-93. PubMed ID: 14514353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two mode ion channels induced by interaction of acidic amphipathic alpha-helical peptides with lipid bilayers.
    Lee S; Tanaka T; Anzai K; Kirino Y; Aoyagi H; Sugihara G
    Biochim Biophys Acta; 1994 Apr; 1191(1):181-9. PubMed ID: 7512383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural investigations of basic amphipathic model peptides in the presence of lipid vesicles studied by circular dichroism, fluorescence, monolayer and modeling.
    Mangavel C; Maget-Dana R; Tauc P; Brochon JC; Sy D; Reynaud JA
    Biochim Biophys Acta; 1998 May; 1371(2):265-83. PubMed ID: 9630666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices.
    Zhou NE; Mant CT; Hodges RS
    Pept Res; 1990; 3(1):8-20. PubMed ID: 2134049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of class A amphipathic helical peptides with phospholipid unilamellar vesicles.
    Gazzara JA; Phillips MC; Lund-Katz S; Palgunachari MN; Segrest JP; Anantharamaiah GM; Snow JW
    J Lipid Res; 1997 Oct; 38(10):2134-46. PubMed ID: 9374135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revisiting peptide amphiphilicity for membrane pore formation.
    Lorin A; Noël M; Provencher MÈ; Turcotte V; Masson C; Cardinal S; Lagüe P; Voyer N; Auger M
    Biochemistry; 2011 Nov; 50(43):9409-20. PubMed ID: 21942823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of a novel membrane-destabilizing peptide selectively acting on acidic liposomes.
    Machida S; Niimi S; Shi X; Ando Y; Yu Y
    Biosci Biotechnol Biochem; 2000 May; 64(5):985-94. PubMed ID: 10879468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.