These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 23064747)

  • 1. SeqFold: genome-scale reconstruction of RNA secondary structure integrating high-throughput sequencing data.
    Ouyang Z; Snyder MP; Chang HY
    Genome Res; 2013 Feb; 23(2):377-87. PubMed ID: 23064747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data.
    Wu Y; Shi B; Ding X; Liu T; Hu X; Yip KY; Yang ZR; Mathews DH; Lu ZJ
    Nucleic Acids Res; 2015 Sep; 43(15):7247-59. PubMed ID: 26170232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis.
    Smola MJ; Rice GM; Busan S; Siegfried NA; Weeks KM
    Nat Protoc; 2015 Nov; 10(11):1643-69. PubMed ID: 26426499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational analysis of RNA structures with chemical probing data.
    Ge P; Zhang S
    Methods; 2015 Jun; 79-80():60-6. PubMed ID: 25687190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplexed RNA structure characterization with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq).
    Lucks JB; Mortimer SA; Trapnell C; Luo S; Aviran S; Schroth GP; Pachter L; Doudna JA; Arkin AP
    Proc Natl Acad Sci U S A; 2011 Jul; 108(27):11063-8. PubMed ID: 21642531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Nuclease Probing of RNA Structures Using FragSeq.
    Uzilov AV; Underwood JG
    Methods Mol Biol; 2016; 1490():105-34. PubMed ID: 27665596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping RNA Structure In Vitro with SHAPE Chemistry and Next-Generation Sequencing (SHAPE-Seq).
    Watters KE; Lucks JB
    Methods Mol Biol; 2016; 1490():135-62. PubMed ID: 27665597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide Approaches for RNA Structure Probing.
    Silverman IM; Berkowitz ND; Gosai SJ; Gregory BD
    Adv Exp Med Biol; 2016; 907():29-59. PubMed ID: 27256381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel computation of genome-scale RNA secondary structure to detect structural constraints on human genome.
    Kawaguchi R; Kiryu H
    BMC Bioinformatics; 2016 May; 17(1):203. PubMed ID: 27153986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. StructureFold: genome-wide RNA secondary structure mapping and reconstruction in vivo.
    Tang Y; Bouvier E; Kwok CK; Ding Y; Nekrutenko A; Bevilacqua PC; Assmann SM
    Bioinformatics; 2015 Aug; 31(16):2668-75. PubMed ID: 25886980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA structure framework: automated transcriptome-wide reconstruction of RNA secondary structures from high-throughput structure probing data.
    Incarnato D; Neri F; Anselmi F; Oliviero S
    Bioinformatics; 2016 Feb; 32(3):459-61. PubMed ID: 26487736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating chemical footprinting data into RNA secondary structure prediction.
    Zarringhalam K; Meyer MM; Dotu I; Chuang JH; Clote P
    PLoS One; 2012; 7(10):e45160. PubMed ID: 23091593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNAex: an RNA secondary structure prediction server enhanced by high-throughput structure-probing data.
    Wu Y; Qu R; Huang Y; Shi B; Liu M; Li Y; Lu ZJ
    Nucleic Acids Res; 2016 Jul; 44(W1):W294-301. PubMed ID: 27137891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-throughput approach to profile RNA structure.
    Delli Ponti R; Marti S; Armaos A; Tartaglia GG
    Nucleic Acids Res; 2017 Mar; 45(5):e35. PubMed ID: 27899588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a next-generation atlas of RNA secondary structure.
    Bai Y; Dai X; Harrison A; Johnston C; Chen M
    Brief Bioinform; 2016 Jan; 17(1):63-77. PubMed ID: 25922372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of RNA structure in posttranscriptional regulation of gene expression.
    Jacobs E; Mills JD; Janitz M
    J Genet Genomics; 2012 Oct; 39(10):535-43. PubMed ID: 23089363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. StructureFold2: Bringing chemical probing data into the computational fold of RNA structural analysis.
    Tack DC; Tang Y; Ritchey LE; Assmann SM; Bevilacqua PC
    Methods; 2018 Jul; 143():12-15. PubMed ID: 29410279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Protein Interaction Profile Sequencing (PIP-seq) to Identify RNA Secondary Structure and RNA-Protein Interaction Sites of Long Noncoding RNAs in Plants.
    Kramer MC; Gregory BD
    Methods Mol Biol; 2019; 1933():343-361. PubMed ID: 30945196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing RNA structures in vitro and in vivo with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq).
    Watters KE; Yu AM; Strobel EJ; Settle AH; Lucks JB
    Methods; 2016 Jul; 103():34-48. PubMed ID: 27064082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states.
    Wilkinson KA; Gorelick RJ; Vasa SM; Guex N; Rein A; Mathews DH; Giddings MC; Weeks KM
    PLoS Biol; 2008 Apr; 6(4):e96. PubMed ID: 18447581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.