These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23064889)

  • 21. Dynamic alterations of membrane tethers stabilize leukocyte rolling on P-selectin.
    Ramachandran V; Williams M; Yago T; Schmidtke DW; McEver RP
    Proc Natl Acad Sci U S A; 2004 Sep; 101(37):13519-24. PubMed ID: 15353601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The cooperative effect of L-selectin clusters and velocity-dependent bond formation that stabilizes leukocyte rolling.
    Riha P; Dumas D; Latger V; Muller S; Stoltz JF
    Biorheology; 2003; 40(1-3):161-6. PubMed ID: 12454400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induced changes of leukocyte slow rolling in an in flow pharmacological model of adhesion to endothelial cells.
    Renard M; Heutte F; Boutherin-Falson O; Finet M; Boisseau MR
    Biorheology; 2003; 40(1-3):173-8. PubMed ID: 12454402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Transient Exposure to High Shear on Neutrophil Rolling Behavior.
    Lewis CS; Alsmadi NZ; Snyder TA; Schmidtke DW
    Cell Mol Bioeng; 2018 Aug; 11(4):279-290. PubMed ID: 31372187
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting the leukocyte activation cascade: getting to the site of inflammation using microfabricated assays.
    Kim E; Schueller O; Sweetnam PM
    Lab Chip; 2012 Jun; 12(12):2255-64. PubMed ID: 22437145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CXC chemokines, MIP-2 and KC, induce P-selectin-dependent neutrophil rolling and extravascular migration in vivo.
    Zhang XW; Liu Q; Wang Y; Thorlacius H
    Br J Pharmacol; 2001 Jun; 133(3):413-21. PubMed ID: 11375258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Therapeutic potential of inhibiting leukocyte rolling in ischemia/reperfusion.
    Kubes P; Jutila M; Payne D
    J Clin Invest; 1995 Jun; 95(6):2510-9. PubMed ID: 7539452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micropatterned surfaces for controlling cell adhesion and rolling under flow.
    Nalayanda DD; Kalukanimuttam M; Schmidtke DW
    Biomed Microdevices; 2007 Apr; 9(2):207-14. PubMed ID: 17160704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of shear on P-selectin deposition in microfluidic channels.
    Shimp EA; Alsmadi NZ; Cheng T; Lam KH; Lewis CS; Schmidtke DW
    Biomicrofluidics; 2016 Mar; 10(2):024128. PubMed ID: 27190563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability.
    Dong C; Lei XX
    J Biomech; 2000 Jan; 33(1):35-43. PubMed ID: 10609516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations.
    Liu MC; Shih HC; Wu JG; Weng TW; Wu CY; Lu JC; Tung YC
    Lab Chip; 2013 May; 13(9):1743-53. PubMed ID: 23475014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative dynamic footprinting microscopy reveals mechanisms of neutrophil rolling.
    Sundd P; Gutierrez E; Pospieszalska MK; Zhang H; Groisman A; Ley K
    Nat Methods; 2010 Oct; 7(10):821-4. PubMed ID: 20871617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanics of leukocyte rolling.
    Sundd P; Pospieszalska MK; Cheung LS; Konstantopoulos K; Ley K
    Biorheology; 2011; 48(1):1-35. PubMed ID: 21515934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rolling neutrophils form tethers and slings under physiologic conditions in vivo.
    Marki A; Buscher K; Mikulski Z; Pries A; Ley K
    J Leukoc Biol; 2018 Jan; 103(1):67-70. PubMed ID: 28821572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leukocyte rolling on P-selectin: a three-dimensional numerical study of the effect of cytoplasmic viscosity.
    Khismatullin DB; Truskey GA
    Biophys J; 2012 Apr; 102(8):1757-66. PubMed ID: 22768931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systematic analysis of in vitro cell rolling using a multi-well plate microfluidic system.
    Levy O; Anandakumaran P; Ngai J; Karnik R; Karp JM
    J Vis Exp; 2013 Oct; (80):e50866. PubMed ID: 24193253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A 3D numerical study of the effect of channel height on leukocyte deformation and adhesion in parallel-plate flow chambers.
    Khismatullin DB; Truskey GA
    Microvasc Res; 2004 Nov; 68(3):188-202. PubMed ID: 15501238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A theoretical model study of the influence of fluid stresses on a cell adhering to a microchannel wall.
    Gaver DP; Kute SM
    Biophys J; 1998 Aug; 75(2):721-33. PubMed ID: 9675174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioinspired microfluidic assay for in vitro modeling of leukocyte-endothelium interactions.
    Lamberti G; Prabhakarpandian B; Garson C; Smith A; Pant K; Wang B; Kiani MF
    Anal Chem; 2014 Aug; 86(16):8344-51. PubMed ID: 25135319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidics-based side view flow chamber reveals tether-to-sling transition in rolling neutrophils.
    Marki A; Gutierrez E; Mikulski Z; Groisman A; Ley K
    Sci Rep; 2016 Jun; 6():28870. PubMed ID: 27357741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.