These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2306499)

  • 41. Freezing resistance in intertidal invertebrates.
    Murphy DJ
    Annu Rev Physiol; 1983; 45():289-99. PubMed ID: 6342518
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapidly cooled human sperm: no evidence of intracellular ice formation.
    Morris GJ
    Hum Reprod; 2006 Aug; 21(8):2075-83. PubMed ID: 16613884
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapidly cooled horse spermatozoa: loss of viability is due to osmotic imbalance during thawing, not intracellular ice formation.
    Morris GJ; Faszer K; Green JE; Draper D; Grout BW; Fonseca F
    Theriogenology; 2007 Sep; 68(5):804-12. PubMed ID: 17645937
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cryopreservation of boar semen: equilibrium freezing in the cryomicroscope and in straws.
    Woelders H; Matthijs A; Zuidberg CA; Chaveiro AE
    Theriogenology; 2005 Jan; 63(2):383-95. PubMed ID: 15626406
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polyvinylpyrrolidone (PVP) mitigates the damaging effects of intracellular ice formation in adult stem cells.
    Guha A; Devireddy R
    Ann Biomed Eng; 2010 May; 38(5):1826-35. PubMed ID: 20177781
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calorimetric measurement of water transport and intracellular ice formation during freezing in cell suspensions.
    Mori S; Choi J; Devireddy RV; Bischof JC
    Cryobiology; 2012 Dec; 65(3):242-55. PubMed ID: 22863747
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cooling rate dependent biophysical and viability response shift with attachment state in human dermal fibroblast cells.
    Choi J; Bischof JC
    Cryobiology; 2011 Dec; 63(3):285-91. PubMed ID: 22020295
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The relevance of ice crystal formation for the cryopreservation of tissues and organs.
    Pegg DE
    Cryobiology; 2010 Jul; 60(3 Suppl):S36-44. PubMed ID: 20159009
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental study of intracellular ice growth in human umbilical vein endothelial cells.
    Yang G; Zhang A; Xu LX
    Cryobiology; 2009 Feb; 58(1):96-102. PubMed ID: 18950613
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cryopreservation of articular cartilage. Part 2: mechanisms of cryoinjury.
    Pegg DE; Wang L; Vaughan D; Hunt CJ
    Cryobiology; 2006 Jun; 52(3):347-59. PubMed ID: 16527262
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intracellular ice formation and growth in MCF-7 cancer cells.
    Yang G; Zhang A; Xu LX
    Cryobiology; 2011 Aug; 63(1):38-45. PubMed ID: 21536022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Osmotic response of individual cells during freezing. I. Experimental volume measurements.
    Schwartz GJ; Diller KR
    Cryobiology; 1983 Feb; 20(1):61-77. PubMed ID: 6339172
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical simulation of water transport and intracellular ice formation for freezing of endothelial cells.
    Zhao G; Xu Y; Ding WP; Hu MB
    Cryo Letters; 2013; 34(1):40-51. PubMed ID: 23435709
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cryopreservation of animal cells.
    Armitage WJ
    Symp Soc Exp Biol; 1987; 41():379-93. PubMed ID: 3332493
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A microscale model for prediction of breast cancer cell damage during cryosurgery.
    Zhang A; Xu LX; Sandison GA; Zhang J
    Cryobiology; 2003 Oct; 47(2):143-54. PubMed ID: 14580848
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Response of the cell membrane-cytoskeleton complex to osmotic and freeze/thaw stresses. Part 2: The link between the state of the membrane-cytoskeleton complex and the cellular damage.
    Ragoonanan V; Less R; Aksan A
    Cryobiology; 2013 Apr; 66(2):96-104. PubMed ID: 23261886
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparative study of the morphology and viability of hyphae of Penicillium expansum and Phytophthora nicotianae during freezing and thawing.
    Smith D; Coulson GE; Morris GJ
    J Gen Microbiol; 1986 Jul; 132(7):2013-21. PubMed ID: 3794645
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Freezing-induced cellular and membrane dehydration in the presence of cryoprotective agents.
    Akhoondi M; Oldenhof H; Sieme H; Wolkers WF
    Mol Membr Biol; 2012 Sep; 29(6):197-206. PubMed ID: 22830958
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A stable state of frozen protoplasm with invisible intracellular ice crystals obtained by rapid cooling.
    Asahina E; Shimada K; Hisada Y
    Exp Cell Res; 1970 Mar; 59(3):349-58. PubMed ID: 5434740
    [No Abstract]   [Full Text] [Related]  

  • 60. In situ spectroscopic quantification of protein-ice interactions.
    Twomey A; Less R; Kurata K; Takamatsu H; Aksan A
    J Phys Chem B; 2013 Jul; 117(26):7889-97. PubMed ID: 23742723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.