BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2306507)

  • 1. P-31 nuclear magnetic resonance studies of the appearance of an isotropic component in dielaidoylphosphatidylethanolamine.
    Veiro JA; Khalifah RG; Rowe ES
    Biophys J; 1990 Mar; 57(3):637-41. PubMed ID: 2306507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The polymorphic phase behavior of dielaidoylphosphatidylethanolamine. Effect of n-alkanols.
    Veiro JA; Khalifah RG; Rowe ES
    Biochim Biophys Acta; 1989 Feb; 979(2):251-6. PubMed ID: 2923880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study.
    Sot J; Aranda FJ; Collado MI; Goñi FM; Alonso A
    Biophys J; 2005 May; 88(5):3368-80. PubMed ID: 15695626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ethylene glycol)-lipid conjugates promote bilayer formation in mixtures of non-bilayer-forming lipids.
    Holland JW; Cullis PR; Madden TD
    Biochemistry; 1996 Feb; 35(8):2610-7. PubMed ID: 8611564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray diffraction study of the polymorphic behavior of N-methylated dioleoylphosphatidylethanolamine.
    Gruner SM; Tate MW; Kirk GL; So PT; Turner DC; Keane DT; Tilcock CP; Cullis PR
    Biochemistry; 1988 Apr; 27(8):2853-66. PubMed ID: 3401452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymorphic phase behaviour of dilinoleoylphosphatidylethanolamine and palmitoyloleoylphosphatidylcholine mixtures. Structural changes between hexagonal, cubic and bilayer phases.
    Boni LT; Hui SW
    Biochim Biophys Acta; 1983 Jun; 731(2):177-85. PubMed ID: 6849915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusion of phosphatidylethanolamine-containing liposomes and mechanism of the L alpha-HII phase transition.
    Ellens H; Bentz J; Szoka FC
    Biochemistry; 1986 Jul; 25(14):4141-7. PubMed ID: 3741846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion.
    Siegel DP
    Biophys J; 1986 Jun; 49(6):1171-83. PubMed ID: 3719075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlamellar phases induced by the interaction of gramicidin S with lipid bilayers. A possible relationship to membrane-disrupting activity.
    Prenner EJ; Lewis RN; Neuman KC; Gruner SM; Kondejewski LH; Hodges RS; McElhaney RN
    Biochemistry; 1997 Jun; 36(25):7906-16. PubMed ID: 9201936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray diffraction reconstruction of the inverted hexagonal (HII) phase in lipid-water systems.
    Turner DC; Gruner SM
    Biochemistry; 1992 Feb; 31(5):1340-55. PubMed ID: 1736992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diacylglycerols, lysolecithin, or hydrocarbons markedly alter the bilayer to hexagonal phase transition temperature of phosphatidylethanolamines.
    Epand RM
    Biochemistry; 1985 Dec; 24(25):7092-5. PubMed ID: 4084564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of lipid polymorphism by the feline leukemia virus fusion peptide: implications for the fusion mechanism.
    Davies SM; Epand RF; Bradshaw JP; Epand RM
    Biochemistry; 1998 Apr; 37(16):5720-9. PubMed ID: 9548958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of the peptide antibiotic alamethicin with bilayer- and non-bilayer-forming lipids: influence of increasing alamethicin concentration on the lipids supramolecular structures.
    Angelova A; Ionov R; Koch MH; Rapp G
    Arch Biochem Biophys; 2000 Jun; 378(1):93-106. PubMed ID: 10871049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal amphiphile phases. III. Isotropic and inverted cubic state formation via intermediates in transitions between L alpha and HII phases.
    Siegel DP
    Chem Phys Lipids; 1986 Dec; 42(4):279-301. PubMed ID: 3829210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 31P NMR and X-ray diffraction study of the effect of photopolymerization on lipid polymorphism.
    Barry JA; Lamparski H; Shyamsunder E; Osterberg F; Cerne J; Brown MF; O'Brien DF
    Biochemistry; 1992 Oct; 31(41):10114-20. PubMed ID: 1390768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane fusion and inverted phases.
    Ellens H; Siegel DP; Alford D; Yeagle PL; Boni L; Lis LJ; Quinn PJ; Bentz J
    Biochemistry; 1989 May; 28(9):3692-703. PubMed ID: 2751990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilayer phase transitions of N-methylated dioleoylphosphatidylethanolamines under high pressure.
    Kusube M; Goto M; Tamai N; Matsuki H; Kaneshina S
    Chem Phys Lipids; 2006 Jul; 142(1-2):94-102. PubMed ID: 16620796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of cholesterol on the structural preferences of dioleoylphosphatidylethanolamine-dioleoylphosphatidylcholine systems: a phosphorus-31 and deuterium nuclear magnetic resonance study.
    Tilcock CP; Bally MB; Farren SB; Cullis PR
    Biochemistry; 1982 Sep; 21(19):4596-601. PubMed ID: 7138819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus-31 nuclear magnetic resonance spectra characteristic of hexagonal and isotropic phospholipid phases generated from phosphatidylethanolamine in the bilayer phase.
    Thayer AM; Kohler SJ
    Biochemistry; 1981 Nov; 20(24):6831-4. PubMed ID: 7317356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the phase transition behavior of phosphatidylethanolamine by cholesterol and oxysterols.
    Epand RM; Bottega R
    Biochemistry; 1987 Apr; 26(7):1820-5. PubMed ID: 3593694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.