These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 23065401)
1. Suppressive subtractive hybridization approach revealed differential expression of hypersensitive response and reactive oxygen species production genes in tea (Camellia sinensis (L.) O. Kuntze) leaves during Pestalotiopsis thea infection. Senthilkumar P; Thirugnanasambantham K; Mandal AK Appl Biochem Biotechnol; 2012 Dec; 168(7):1917-27. PubMed ID: 23065401 [TBL] [Abstract][Full Text] [Related]
2. Identification of differentially expressed genes in dormant (banjhi) bud of tea (Camellia sinensis (L.) O. Kuntze) using subtractive hybridization approach. Krishnaraj T; Gajjeraman P; Palanisamy S; Subhas Chandrabose SR; Azad Mandal AK Plant Physiol Biochem; 2011 Jun; 49(6):565-71. PubMed ID: 21481598 [TBL] [Abstract][Full Text] [Related]
3. Construction of cDNA library and preliminary analysis of expressed sequence tags from tea plant [Camellia sinensis (L) O. Kuntze]. Phukon M; Namdev R; Deka D; Modi MK; Sen P Gene; 2012 Sep; 506(1):202-6. PubMed ID: 22759521 [TBL] [Abstract][Full Text] [Related]
4. Susceptibility against grey blight disease-causing fungus Pestalotiopsis sp. in tea (Camellia sinensis (L.) O. Kuntze) cultivars is influenced by anti-oxidative enzymes. Palanisamy S; Mandal AK Appl Biochem Biotechnol; 2014 Jan; 172(1):216-23. PubMed ID: 24068475 [TBL] [Abstract][Full Text] [Related]
5. Multi-omics analysis to visualize the dynamic roles of defense genes in the response of tea plants to gray blight. Wang S; Liu L; Mi X; Zhao S; An Y; Xia X; Guo R; Wei C Plant J; 2021 May; 106(3):862-875. PubMed ID: 33595875 [TBL] [Abstract][Full Text] [Related]
6. Analysis of dormant bud (Banjhi) specific transcriptome of tea (Camellia sinensis (L.) O. Kuntze) from cDNA library revealed dormancy-related genes. Thirugnanasambantham K; Prabu G; Palanisamy S; Chandrabose SR; Mandal AK Appl Biochem Biotechnol; 2013 Feb; 169(4):1405-17. PubMed ID: 23315209 [TBL] [Abstract][Full Text] [Related]
7. Identification of differentially-expressed genes potentially implicated in drought response in pitaya (Hylocereus undatus) by suppression subtractive hybridization and cDNA microarray analysis. Fan QJ; Yan FX; Qiao G; Zhang BX; Wen XP Gene; 2014 Jan; 533(1):322-31. PubMed ID: 24076355 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the early response of the orchid, Phalaenopsis amabilis, to Erwinia chrysanthemi infection using expression profiling. Fu SF; Tsai TM; Chen YR; Liu CP; Haiso LJ; Syue LH; Yeh HH; Huang HJ Physiol Plant; 2012 Jul; 145(3):406-25. PubMed ID: 22268629 [TBL] [Abstract][Full Text] [Related]
9. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization. Wei K; Wang L; Cheng H; Zhang C; Ma C; Zhang L; Gong W; Wu L Gene; 2013 Feb; 514(2):91-8. PubMed ID: 23201417 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Causal Agents of a Novel Disease Inducing Brown-Black Spots on Tender Tea Leaves in China. Wang ZH; Zhao ZX; Hong N; Ni D; Cai L; Xu WX; Xiao YN Plant Dis; 2017 Oct; 101(10):1802-1811. PubMed ID: 30676920 [TBL] [Abstract][Full Text] [Related]
11. Identification and characterization of fungi associated with blister blight lesions of tea (Camellia sinensis L. Kuntze) isolated from Meghalaya, India. Barman A; Nath A; Thakur D Microbiol Res; 2020 Nov; 240():126561. PubMed ID: 32799070 [TBL] [Abstract][Full Text] [Related]
13. Differential expression of resistance to powdery mildew at the early stage of development in wheat line N0308. Alam MA; Hongpo W; Hong Z; Ji WQ Genet Mol Res; 2014 Jun; 13(2):4289-301. PubMed ID: 25036173 [TBL] [Abstract][Full Text] [Related]
14. miR477 targets the phenylalanine ammonia-lyase gene and enhances the susceptibility of the tea plant (Camellia sinensis) to disease during Pseudopestalotiopsis species infection. Wang S; Liu S; Liu L; Li R; Guo R; Xia X; Wei C Planta; 2020 Feb; 251(3):59. PubMed ID: 32025888 [TBL] [Abstract][Full Text] [Related]
15. Molecular Cloning and Characterization of Hydroperoxide Lyase Gene in the Leaves of Tea Plant (Camellia sinensis). Deng WW; Wu YL; Li YY; Tan Z; Wei CL J Agric Food Chem; 2016 Mar; 64(8):1770-6. PubMed ID: 26886573 [TBL] [Abstract][Full Text] [Related]
16. Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar. Wang L; Yue C; Cao H; Zhou Y; Zeng J; Yang Y; Wang X BMC Plant Biol; 2014 Dec; 14():352. PubMed ID: 25491435 [TBL] [Abstract][Full Text] [Related]
17. The Response of Growth and Transcriptome Profiles of Tea Grey Blight Disease Pathogen Zhang Y; Wang F; Wang L; Zhang L; Espley RV; Lin-Wang K; Cao F Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542498 [TBL] [Abstract][Full Text] [Related]
18. Physiological Changes and Differential Gene Expression of Tea Plants ( Wang Y; Li Y; Wang J; Xiang Z; Xi P; Zhao D DNA Cell Biol; 2021 Jul; 40(7):906-920. PubMed ID: 34129383 [TBL] [Abstract][Full Text] [Related]
19. Genome-Wide Characterization and Expression Analysis of Pathogenesis-Related 1 ( Zhang Q; Guo N; Zhang Y; Yu Y; Liu S Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163217 [TBL] [Abstract][Full Text] [Related]
20. Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq. Wang YN; Tang L; Hou Y; Wang P; Yang H; Wei CL Funct Integr Genomics; 2016 Jul; 16(4):383-98. PubMed ID: 27098524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]