These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 23065690)
1. Effect of PVP on the electroosmotic mobility of wet-etched glass microchannels. Milanova D; Chambers RD; Bahga SS; Santiago JG Electrophoresis; 2012 Nov; 33(21):3259-62. PubMed ID: 23065690 [TBL] [Abstract][Full Text] [Related]
2. Electrophoretic mobility measurements of fluorescent dyes using on-chip capillary electrophoresis. Milanova D; Chambers RD; Bahga SS; Santiago JG Electrophoresis; 2011 Nov; 32(22):3286-94. PubMed ID: 22102501 [TBL] [Abstract][Full Text] [Related]
3. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification. Lin CH; Lee GB; Fu LM; Chen SH Biosens Bioelectron; 2004 Jul; 20(1):83-90. PubMed ID: 15142580 [TBL] [Abstract][Full Text] [Related]
4. Versatile method for electroosmotic flow measurements in microchip electrophoresis. Shakalisava Y; Poitevin M; Viovy JL; Descroix S J Chromatogr A; 2009 Feb; 1216(6):1030-3. PubMed ID: 19118836 [TBL] [Abstract][Full Text] [Related]
5. Measurement of electroosmotic flow in capillary and microchip electrophoresis. Wang W; Zhou F; Zhao L; Zhang JR; Zhu JJ J Chromatogr A; 2007 Nov; 1170(1-2):1-8. PubMed ID: 17915240 [TBL] [Abstract][Full Text] [Related]
6. Low EOF rate measurement based on constant effective mobility in microchip CE. Wang W; Zhao L; Zhou F; Zhang JR; Zhu JJ; Chen HY Electrophoresis; 2007 Aug; 28(16):2893-6. PubMed ID: 17702065 [TBL] [Abstract][Full Text] [Related]
7. EOF measurement by detection of a sampling zone with end-channel amperometry in microchip CE. Wang W; Zhao L; Jiang LP; Zhang JR; Zhu JJ; Chen HY Electrophoresis; 2006 Dec; 27(24):5132-7. PubMed ID: 17161004 [TBL] [Abstract][Full Text] [Related]
8. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing. Thormann W; Caslavska J; Mosher RA J Chromatogr A; 2007 Jul; 1155(2):154-63. PubMed ID: 17307189 [TBL] [Abstract][Full Text] [Related]
9. Suppression of electroosmotic flow and its application to determination of electrophoretic mobilities in a poly(vinylpyrrolidone)-coated capillary. Kaneta T; Ueda T; Hata K; Imasaka T J Chromatogr A; 2006 Feb; 1106(1-2):52-5. PubMed ID: 16443452 [TBL] [Abstract][Full Text] [Related]
11. Electroosmotic flow in microchannels with nanostructures. Yasui T; Kaji N; Mohamadi MR; Okamoto Y; Tokeshi M; Horiike Y; Baba Y ACS Nano; 2011 Oct; 5(10):7775-80. PubMed ID: 21902222 [TBL] [Abstract][Full Text] [Related]
12. Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography. Gustafsson O; Mogensen KB; Kutter JP Electrophoresis; 2008 Aug; 29(15):3145-52. PubMed ID: 18618461 [TBL] [Abstract][Full Text] [Related]
13. Tunable thick polymer coatings for on-chip electrophoretic protein and peptide separation. He M; Zeng Y; Jemere AB; Jed Harrison D J Chromatogr A; 2012 Jun; 1241():112-6. PubMed ID: 22560350 [TBL] [Abstract][Full Text] [Related]
14. Polyelectrolyte coatings for microchip capillary electrophoresis. Liu Y; Henry CS Methods Mol Biol; 2006; 339():57-64. PubMed ID: 16790867 [TBL] [Abstract][Full Text] [Related]