These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 23065823)
1. Sustained, localized transgene expression mediated from lentivirus-loaded biodegradable polyester elastomers. Jen MC; Baler K; Hood AR; Shin S; Shea LD; Ameer GA J Biomed Mater Res A; 2013 May; 101(5):1328-35. PubMed ID: 23065823 [TBL] [Abstract][Full Text] [Related]
2. Biodegradable and radically polymerized elastomers with enhanced processing capabilities. Ifkovits JL; Padera RF; Burdick JA Biomed Mater; 2008 Sep; 3(3):034104. PubMed ID: 18689916 [TBL] [Abstract][Full Text] [Related]
3. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites. Liang SL; Cook WD; Thouas GA; Chen QZ Biomaterials; 2010 Nov; 31(33):8516-29. PubMed ID: 20739061 [TBL] [Abstract][Full Text] [Related]
4. Preparation and properties of a novel biodegradable polyester elastomer with functional groups. Liu QY; Wu SZ; Tan TW; Weng JY; Zhang LQ; Liu L; Tian W; Chen DF J Biomater Sci Polym Ed; 2009; 20(11):1567-78. PubMed ID: 19619397 [TBL] [Abstract][Full Text] [Related]
5. A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Jeong CG; Hollister SJ Biomaterials; 2010 May; 31(15):4304-12. PubMed ID: 20219243 [TBL] [Abstract][Full Text] [Related]
6. Citrate Crosslinked Poly(Glycerol Sebacate) with Tunable Elastomeric Properties. Risley BB; Ding X; Chen Y; Miller PG; Wang Y Macromol Biosci; 2021 Feb; 21(2):e2000301. PubMed ID: 33205616 [TBL] [Abstract][Full Text] [Related]
7. Study on the control of the compositions and properties of a biodegradable polyester elastomer. Liu Q; Tan T; Weng J; Zhang L Biomed Mater; 2009 Apr; 4(2):025015. PubMed ID: 19349654 [TBL] [Abstract][Full Text] [Related]
8. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067 [TBL] [Abstract][Full Text] [Related]
9. Biodegradable fibrous scaffolds with tunable properties formed from photo-cross-linkable poly(glycerol sebacate). Ifkovits JL; Devlin JJ; Eng G; Martens TP; Vunjak-Novakovic G; Burdick JA ACS Appl Mater Interfaces; 2009 Sep; 1(9):1878-86. PubMed ID: 20160937 [TBL] [Abstract][Full Text] [Related]
10. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering. Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512 [TBL] [Abstract][Full Text] [Related]
11. Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications. Chen QZ; Liang SL; Wang J; Simon GP J Mech Behav Biomed Mater; 2011 Nov; 4(8):1805-18. PubMed ID: 22098880 [TBL] [Abstract][Full Text] [Related]
12. Enzymatic and oxidative degradation of poly(polyol sebacate). Li Y; Thouas GA; Shi H; Chen Q J Biomater Appl; 2014 Apr; 28(8):1138-50. PubMed ID: 23904286 [TBL] [Abstract][Full Text] [Related]
13. Photocrosslinkable biodegradable elastomers based on cinnamate-functionalized polyesters. Zhu C; Kustra SR; Bettinger CJ Acta Biomater; 2013 Jul; 9(7):7362-70. PubMed ID: 23567941 [TBL] [Abstract][Full Text] [Related]
14. Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers. Wang Z; Ma Y; Wang Y; Liu Y; Chen K; Wu Z; Yu S; Yuan Y; Liu C Acta Biomater; 2018 Apr; 71():279-292. PubMed ID: 29549052 [TBL] [Abstract][Full Text] [Related]
15. Control the Mechanical Properties and Degradation of Poly(Glycerol Sebacate) by Substitution of the Hydroxyl Groups with Palmitates. Ding X; Chen Y; Chao CA; Wu YL; Wang Y Macromol Biosci; 2020 Sep; 20(9):e2000101. PubMed ID: 33448652 [TBL] [Abstract][Full Text] [Related]
16. A comparative study on poly(xylitol sebacate) and poly(glycerol sebacate): mechanical properties, biodegradation and cytocompatibility. Li Y; Huang W; Cook WD; Chen Q Biomed Mater; 2013 Jun; 8(3):035006. PubMed ID: 23558205 [TBL] [Abstract][Full Text] [Related]
17. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Chen QZ; Bismarck A; Hansen U; Junaid S; Tran MQ; Harding SE; Ali NN; Boccaccini AR Biomaterials; 2008 Jan; 29(1):47-57. PubMed ID: 17915309 [TBL] [Abstract][Full Text] [Related]
18. Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes. Xu B; Li Y; Fang X; Thouas GA; Cook WD; Newgreen DF; Chen Q J Mech Behav Biomed Mater; 2013 Dec; 28():354-65. PubMed ID: 24125905 [TBL] [Abstract][Full Text] [Related]
19. Use of cyclic strain bioreactor for the upregulation of key tenocyte gene expression on Poly(glycerol-sebacate) (PGS) sheets. Deniz P; Guler S; Çelik E; Hosseinian P; Aydin HM Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110293. PubMed ID: 31753347 [TBL] [Abstract][Full Text] [Related]
20. Injectable alginate hydrogel for enhanced spatiotemporal control of lentivector delivery in murine skeletal muscle. Stilhano RS; Madrigal JL; Wong K; Williams PA; Martin PK; Yamaguchi FS; Samoto VY; Han SW; Silva EA J Control Release; 2016 Sep; 237():42-9. PubMed ID: 27374631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]