BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23065887)

  • 1. Titanium oxide modeling and design for innovative biomedical surfaces: a concise review.
    De Nardo L; Raffaini G; Ebramzadeh E; Ganazzoli F
    Int J Artif Organs; 2012 Sep; 35(9):629-41. PubMed ID: 23065887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification of titanium alloy implants.
    Browne M; Gregson PJ
    Biomaterials; 1994 Sep; 15(11):894-8. PubMed ID: 7833436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in the design of titanium alloys for orthopedic applications.
    Guillemot F
    Expert Rev Med Devices; 2005 Nov; 2(6):741-8. PubMed ID: 16293101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.
    Oliveira NT; Guastaldi AC
    Acta Biomater; 2009 Jan; 5(1):399-405. PubMed ID: 18707926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring the surface functionalities of titania nanotube arrays.
    Vasilev K; Poh Z; Kant K; Chan J; Michelmore A; Losic D
    Biomaterials; 2010 Jan; 31(3):532-40. PubMed ID: 19819014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titanium and zirconium based alloys modified by intensive plastic deformation and nitrogen ion implantation for biocompatible implants.
    Byeli AV; Kukareko VA; Kononov AG
    J Mech Behav Biomed Mater; 2012 Feb; 6():89-94. PubMed ID: 22301177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomechanical properties of surface-modified titanium alloys for biomedical applications.
    Cáceres D; Munuera C; Ocal C; Jiménez JA; Gutiérrez A; López MF
    Acta Biomater; 2008 Sep; 4(5):1545-52. PubMed ID: 18499544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn.
    Verissimo NC; Geilich BM; Oliveira HG; Caram R; Webster TJ
    J Biomed Mater Res A; 2015 Dec; 103(12):3757-63. PubMed ID: 26033413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of surface oxide thickness and structure on the corrosion and nickel elution behavior of nitinol biomedical implants.
    Rosenbloom SN; Kumar P; Lasley C
    J Biomed Mater Res B Appl Biomater; 2021 Sep; 109(9):1334-1343. PubMed ID: 33410251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review.
    Kirmanidou Y; Sidira M; Drosou ME; Bennani V; Bakopoulou A; Tsouknidas A; Michailidis N; Michalakis K
    Biomed Res Int; 2016; 2016():2908570. PubMed ID: 26885506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modification of surface sol-gel derived titanium oxide films by self-assembled monolayers (SAMs) and non-specific protein adsorption studies.
    Advincula M; Fan X; Lemons J; Advincula R
    Colloids Surf B Biointerfaces; 2005 Apr; 42(1):29-43. PubMed ID: 15784324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.
    MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL
    Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility of new materials based on nano-structured nitinol with titanium and tantalum composite surface layers: experimental analysis in vitro and in vivo.
    Sevost'yanov MA; Nasakina EO; Baikin AS; Sergienko KV; Konushkin SV; Kaplan MA; Seregin AV; Leonov AV; Kozlov VA; Shkirin AV; Bunkin NF; Kolmakov AG; Simakov SV; Gudkov SV
    J Mater Sci Mater Med; 2018 Mar; 29(3):33. PubMed ID: 29546502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pH on the electrochemical behaviour of titanium alloys for implant applications.
    Souza ME; Lima L; Lima CR; Zavaglia CA; Freire CM
    J Mater Sci Mater Med; 2009 Feb; 20(2):549-52. PubMed ID: 18987951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface elastic properties of Ti alloys modified for medical implants: a force spectroscopy study.
    Munuera C; Matzelle TR; Kruse N; López MF; Gutiérrez A; Jiménez JA; Ocal C
    Acta Biomater; 2007 Jan; 3(1):113-9. PubMed ID: 17070123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New chemical treatment for bioactive titanium alloy with high corrosion resistance.
    Spriano S; Bronzoni M; Rosalbino F; Vernè E
    J Mater Sci Mater Med; 2005 Mar; 16(3):203-11. PubMed ID: 15744611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution.
    Dalmau A; Guiñón Pina V; Devesa F; Amigó V; Igual Muñoz A
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():55-62. PubMed ID: 25579896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modifications of magnesium alloys for biomedical applications.
    Yang J; Cui F; Lee IS
    Ann Biomed Eng; 2011 Jul; 39(7):1857-71. PubMed ID: 21445692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface characteristics and protein adsorption on combinatorial binary Ti-M (Cr, Al, Ni) and Al-M (Ta, Zr) library films.
    Bai Z; Filiaggi MJ; Sanderson RJ; Lohstreter LB; McArthur MA; Dahn JR
    J Biomed Mater Res A; 2010 Feb; 92(2):521-32. PubMed ID: 19235218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.