These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23065887)

  • 21. Effect of coupling asynchronous acoustoelectric effects on the corrosion behavior, microhardness and biocompatibility of biomedical titanium alloy strips.
    Ye X; Tang G
    J Mater Sci Mater Med; 2015 Jan; 26(1):5371. PubMed ID: 25596862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semi-conducting properties of titanium dioxide surfaces on titanium implants.
    Petersson IU; Löberg JE; Fredriksson AS; Ahlberg EK
    Biomaterials; 2009 Sep; 30(27):4471-9. PubMed ID: 19524291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical biocompatibilities of titanium alloys for biomedical applications.
    Niinomi M
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):30-42. PubMed ID: 19627769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface treatments and roughness properties of Ti-based biomaterials.
    Bagno A; Di Bello C
    J Mater Sci Mater Med; 2004 Sep; 15(9):935-49. PubMed ID: 15448401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative corrosion study of Ti-Ta alloys for dental applications.
    Mareci D; Chelariu R; Gordin DM; Ungureanu G; Gloriant T
    Acta Biomater; 2009 Nov; 5(9):3625-39. PubMed ID: 19508903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spark anodization of titanium-zirconium alloy: surface characterization and bioactivity assessment.
    Sharma A; McQuillan AJ; Sharma LA; Waddell JN; Shibata Y; Duncan WJ
    J Mater Sci Mater Med; 2015 Aug; 26(8):221. PubMed ID: 26260697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphology and chemical characterization of Ti surfaces modified for biomedical applications.
    Lewandowska M; Roguska A; Pisarek M; Polak B; Janik-Czachor M; Kurzydłowski KJ
    Biomol Eng; 2007 Nov; 24(5):438-42. PubMed ID: 17768086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of surface treatment on the dissolution of titanium-based implant materials.
    Wisbey A; Gregson PJ; Peter LM; Tuke M
    Biomaterials; 1991 Jul; 12(5):470-3. PubMed ID: 1892982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of the fatigue life of titanium alloys for biomedical devices through microstructural control.
    Niinomi M; Akahori T
    Expert Rev Med Devices; 2010 Jul; 7(4):481-8. PubMed ID: 20583885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review.
    Han X; Ma J; Tian A; Wang Y; Li Y; Dong B; Tong X; Ma X
    Colloids Surf B Biointerfaces; 2023 Jul; 227():113339. PubMed ID: 37182380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monitoring of titanium base alloys-biofluids interface.
    Popa MV; Demetrescu I; Suh SH; Vasilescu E; Drob P; Ionita D; Vasilescu C
    Bioelectrochemistry; 2007 Nov; 71(2):126-34. PubMed ID: 17409027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel electrochemical strategy for improving blood compatibility of titanium-based biomaterials.
    Yang Y; Lai Y; Zhang Q; Wu K; Zhang L; Lin C; Tang P
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):309-13. PubMed ID: 20466524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antibacterial titanium surfaces for medical implants.
    Ferraris S; Spriano S
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():965-78. PubMed ID: 26838926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomaterial optimization in total disc arthroplasty.
    Hallab N; Link HD; McAfee PC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S139-52. PubMed ID: 14560185
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro biocompatibility of Ti-Mg alloys fabricated by direct current magnetron sputtering.
    Hieda J; Niinomi M; Nakai M; Cho K
    Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():1-7. PubMed ID: 26046260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modification of titanium alloy surfaces for percutaneous implants by covalently attaching laminin.
    Gordon DJ; Bhagawati DD; Pendegrass CJ; Middleton CA; Blunn GW
    J Biomed Mater Res A; 2010 Aug; 94(2):586-93. PubMed ID: 20198691
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micro-plasma textured Ti-implant surfaces.
    Beck U; Lange R; Neumann HG
    Biomol Eng; 2007 Feb; 24(1):47-51. PubMed ID: 16860601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Corrosion evaluation of Ti-48Al-2Cr-2Nb (at.%) in Ringer's solution.
    Delgado-Alvarado C; Sundaram PA
    Acta Biomater; 2006 Nov; 2(6):701-8. PubMed ID: 16887397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of temperature on surface characteristics of nitrogen ion implanted biocompatible titanium.
    Aghajani H; Motlagh MS
    J Mater Sci Mater Med; 2017 Feb; 28(2):29. PubMed ID: 28108957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.