BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23065974)

  • 1. Enzymatic characterization of AMP phosphorylase and ribose-1,5-bisphosphate isomerase functioning in an archaeal AMP metabolic pathway.
    Aono R; Sato T; Yano A; Yoshida S; Nishitani Y; Miki K; Imanaka T; Atomi H
    J Bacteriol; 2012 Dec; 194(24):6847-55. PubMed ID: 23065974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic, ligand-dependent conformational change triggers reaction of ribose-1,5-bisphosphate isomerase from Thermococcus kodakarensis KOD1.
    Nakamura A; Fujihashi M; Aono R; Sato T; Nishiba Y; Yoshida S; Yano A; Atomi H; Imanaka T; Miki K
    J Biol Chem; 2012 Jun; 287(25):20784-96. PubMed ID: 22511789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure analysis of archaeal AMP phosphorylase reveals two unique modes of dimerization.
    Nishitani Y; Aono R; Nakamura A; Sato T; Atomi H; Imanaka T; Miki K
    J Mol Biol; 2013 Aug; 425(15):2709-21. PubMed ID: 23659790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Archaeal type III RuBisCOs function in a pathway for AMP metabolism.
    Sato T; Atomi H; Imanaka T
    Science; 2007 Feb; 315(5814):1003-6. PubMed ID: 17303759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pentose bisphosphate pathway for nucleoside degradation in Archaea.
    Aono R; Sato T; Imanaka T; Atomi H
    Nat Chem Biol; 2015 May; 11(5):355-60. PubMed ID: 25822915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Structural Features in Oligomerization, Active-Site Integrity and Ligand Binding of Ribose-1,5-Bisphosphate Isomerase.
    Gogoi P; Kanaujia SP
    Comput Struct Biotechnol J; 2019; 17():333-344. PubMed ID: 30923607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-carboxylating pentose bisphosphate pathway in halophilic archaea.
    Sato T; Utashima SH; Yoshii Y; Hirata K; Kanda S; Onoda Y; Jin JQ; Xiao S; Minami R; Fukushima H; Noguchi A; Manabe Y; Fukase K; Atomi H
    Commun Biol; 2022 Nov; 5(1):1290. PubMed ID: 36434094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of a product complex of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase.
    Taylor TC; Andersson I
    Biochemistry; 1997 Apr; 36(13):4041-6. PubMed ID: 9092835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermostable adenosine 5'-monophosphate phosphorylase from Thermococcus kodakarensis forms catalytically active inclusion bodies.
    Kamel S; Walczak MC; Kaspar F; Westarp S; Neubauer P; Kurreck A
    Sci Rep; 2021 Aug; 11(1):16880. PubMed ID: 34413335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A presumed homologue of the regulatory subunits of eIF2B functions as ribose-1,5-bisphosphate isomerase in Pyrococcus horikoshii OT3.
    Gogoi P; Kanaujia SP
    Sci Rep; 2018 Jan; 8(1):1891. PubMed ID: 29382938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TK1211 Encodes an Amino Acid Racemase towards Leucine and Methionine in the Hyperthermophilic Archaeon Thermococcus kodakarensis.
    Zheng RC; Lu XF; Tomita H; Hachisuka SI; Zheng YG; Atomi H
    J Bacteriol; 2021 Mar; 203(7):. PubMed ID: 33468590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis.
    Orita I; Sato T; Yurimoto H; Kato N; Atomi H; Imanaka T; Sakai Y
    J Bacteriol; 2006 Jul; 188(13):4698-704. PubMed ID: 16788179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for the epsilon-amino group of lysine-334 of ribulose-1,5-bisphosphate carboxylase in the addition of carbon dioxide to the 2,3-enediol(ate) of ribulose 1,5-bisphosphate.
    Lorimer GH; Chen YR; Hartman FC
    Biochemistry; 1993 Sep; 32(35):9018-24. PubMed ID: 8369274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitation of the terminal proton transfer reaction of ribulose 1,5-bisphosphate carboxylase/oxygenase by active-site Lys166.
    Harpel MR; Hartman FC
    Biochemistry; 1996 Nov; 35(44):13865-70. PubMed ID: 8909282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribose-5-phosphate isomerase and ribulose-5-phosphate kinase show apparent specificity for a specific ribulose 5-phosphate species.
    Anderson LE
    FEBS Lett; 1987 Feb; 212(1):45-8. PubMed ID: 3026853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism Dealing with Thermal Degradation of NAD
    Hachisuka SI; Sato T; Atomi H
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28652302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of Cytidine, Deoxycytidine, and Their Analog Monophosphates by Human UMP/CMP Kinase Is Differentially Regulated by ATP and Magnesium.
    Hsu CH; Liou JY; Dutschman GE; Cheng YC
    Mol Pharmacol; 2005 Mar; 67(3):806-14. PubMed ID: 15550676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An uncharacterized member of the ribokinase family in Thermococcus kodakarensis exhibits myo-inositol kinase activity.
    Sato T; Fujihashi M; Miyamoto Y; Kuwata K; Kusaka E; Fujita H; Miki K; Atomi H
    J Biol Chem; 2013 Jul; 288(29):20856-20867. PubMed ID: 23737529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribose-5-phosphate biosynthesis in Methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway.
    Grochowski LL; Xu H; White RH
    J Bacteriol; 2005 Nov; 187(21):7382-9. PubMed ID: 16237021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide binding to human UMP-CMP kinase using fluorescent derivatives -- a screening based on affinity for the UMP-CMP binding site.
    Topalis D; Kumamoto H; Amaya Velasco MF; Dugué L; Haouz A; Alexandre JAC; Gallois-Montbrun S; Alzari PM; Pochet S; Agrofoglio LA; Deville-Bonne D
    FEBS J; 2007 Jul; 274(14):3704-3714. PubMed ID: 17608725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.